Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (1): 56-67.doi: 10.16088/j.issn.1001-6600.2025022502

• Intelligence Information Processing • Previous Articles     Next Articles

Research on Lightweight PCB Defect Detection Algorithm Based on YOLO11

HUANG Wenjie1,2, LUO Weiping1,2*, CHEN Zhennan1, PENG Zhixiang1,2, DING Zihao1,2   

  1. 1. College of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan Hubei 430200, China;
    2. Key Laboratory of Digitized Textile Equipment of Hubei Province (Wuhan Textile University), Wuhan Hubei 430200, China
  • Received:2025-02-25 Revised:2025-06-30 Online:2026-01-05 Published:2026-01-26

Abstract: To address the issues of low detection accuracy, high model complexity, and excessive computational costs in small-target defect detection of printed circuit boards (PCBs), which hinder deployment on edge devices, a lightweight algorithm based on YOLO11n was proposed. Firstly, the BiMAFPN (Bi-Directional Multi-Branch Auxiliary Feature Pyramid Network) architecture is employed to reconstruct the network structure. Subsequently, the C3k2_Faster module is implemented to reduce model complexity while maintaining detection accuracy. Finally, the LSCD (Lightweight Shared Convolutional Detection) head is introduced to enhance precision. Experimental results demonstrate that the proposed model achieves 93.0% precision and 82.8% recall, with a compact model size of 3.8 MiB. Enhancements include a 0.6 percentage points increase in precision. The mean average precision (mAP) values reach 89.9% (mAP@0.5) and 47.1% (mAP@0.5:0.95), representing improvements of 1.4 and 0.6 percentage points respectively compared with the baseline YOLO11n model while reducing model size, computational complexity, and parameter count by 30.9%, 19.0% and 34.6% respectively. These optimizations enable the improved algorithm to maintain competitive detection performance while achieving significant lightweight characteristics, demonstrating strong potential for practical deployment in edge computing environments.

Key words: YOLO11, PCB defect, lightweight, BiFPN, object detection

CLC Number:  TP391.41
[1] KUO C F J, FANG T Y, LEE C L, et al. Automated optical inspection system for surface mount device light emitting diodes[J]. Journal of Intelligent Manufacturing, 2019, 30(2): 641-655. DOI: 10.1007/s10845-016-1270-6.
[2] LOU L S, LU K, XUE J. Defect detection based on improved YOLOx for ultrasonic images[J]. Sensing and Imaging, 2024, 25(1): 10. DOI: 10.1007/s11220-024-00459-4.
[3] 郭渊, 许伟佳, 董振标. 基于深度学习的PCB表面缺陷检测研究进展[J]. 机床与液压, 2024, 52(23): 188-198. DOI: 10.3969/j.issn.1001-3881.2024.23.030.
[4] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2016: 779-788. DOI: 10.1109/CVPR.2016.91.
[5] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Computer Vision-ECCV 2016: LNCS Volume 9905.Cham: Springer International Publishing AG, 2016: 21-37. DOI: 10.1007/978-3-319-46448-0.
[6] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 10778-10787. DOI: 10.1109/CVPR42600.2020.01079.
[7] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031.
[8] 李俊. 基于SSD模型的PCB外观缺陷检测[J]. 现代计算机, 2022, 28(7): 79-82, 91. DOI: 10.3969/j.issn.1007-1423.2022.07.014.
[9] 吴伟浩, 李青. 基于改进Yolo v3的电连接器缺陷检测[J]. 传感技术学报, 2020, 33(2): 299-307. DOI: 10.3969/j.issn.1004-1699.2020.02.022.
[10] 龚陈博, 南卓江, 陶卫. 基于改进Faster RCNN的PCB表面缺陷检测研究[J]. 自动化仪表, 2024, 45(7): 99-103, 109. DOI: 10.16086/j.cnki.issn1000-0380.2023060097.
[11] 姜源, 付波, 权轶, 等. 基于改进YOLOv8n的PCB缺陷检测算法[J]. 国外电子测量技术, 2024, 43(6): 22-32. DOI: 10.19652/j.cnki.femt.2305887.
[12] 王健, 肖迪, 冯李航, 等. 基于改进YOLOv8s的PCB小目标缺陷检测模型[J]. 计算机工程与应用, 2025, 61(15): 288-297. DOI: 10.3778/j.issn.1002-8331.2406-0020.
[13] 吕秀丽, 杨昕升, 曹志民. 改进YOLOv8的PCB表面缺陷检测算法[J]. 电子测量技术, 2024, 47(12): 100-108. DOI: 10.19651/j.cnki.emt.2415797.
[14] 张淑卿, 孟昊, 葛超. 改进YOLOv8n的轻量级PCB缺陷检测算法[J]. 现代电子技术, 2024, 47(15): 115-121. DOI: 10.16652/j.issn.1004-373x.2024.15.019.
[15] CHAN K Y, YIU K F C, LAM H K, et al. Ball bonding inspections using a conjoint framework with machine learning and human judgement[J]. Applied Soft Computing, 2021, 102: 107115. DOI: 10.1016/j.asoc.2021.107115.
[16] 李忠科, 刘小芳. 基于轻量级YOLOv8n网络的PCB缺陷检测算法[J]. 电子测量技术, 2024, 47(4): 120-126. DOI: 10.19651/j.cnki.emt.2315076.
[17] 王军, 伍毅, 陈正超. 基于SMT-YOLOv8的PCB缺陷检测研究[J]. 电子测量技术, 2024, 47(11): 131-137. DOI: 10.19651/j.cnki.emt.2416003.
[18] YANG Z Q, GUAN Q, ZHAO K E, et al. Multi-branch auxiliary fusion YOLO with re-parameterization heterogeneous convolutional for accurate object detection[C]//Pattern Recognition and Computer Vision: LNCS Volume 15042. Singapore: Springer Nature Singapore Pte Ltd., 2024: 492-505. DOI: 10.1007/978-981-97-8858-3_34.
[19] CHEN J R, KAO S H, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2023: 12021-12031. DOI: 10.1109/CVPR52729.2023.01157.
[20] 周翔, 王可庆, 周新翔, 等. 基于改进YOLOv10n的电动车头盔佩戴检测算法[J]. 电子测量技术, 2025, 48(5): 40-49. DOI: 10.19651/j.cnki.emt.2417353.
[21] 王海群, 王炳楠, 葛超. 改进ESP-YOLO的PCB缺陷检测算法[J]. 计算机工程与科学, 2025, 47(2): 317-326. DOI: 10.3969/j.issn.1007-130X.2025.02.014.
[22] 颜豪男, 吕伏. 多尺度特征增强的PCB板表面缺陷检测算法[J/OL]. 信息与控制: 1-13[2025-02-25]. https://doi.org/10.13976/j.cnki.xk.2024.4021.
[23] 范博淦, 王淑青, 陈开元. 基于改进YOLOv8的印刷电路板缺陷检测模型[J]. 现代电子技术, 2025, 48(11): 144-150. DOI: 10.16652/j.issn.1004-373x.2025.11.022.
[24] LIU C J, ZHANG M X, YAN H W, et al. CSYOLO: a YOLOv8-based PCB defect detection model integrating composite backbone networks and dynamic snake convolution[J/OL]. Journal of Measurement Science and Instrumentation: 1-12[2025-06-28]. https://link.cnki.net/urlid/14.1357.th.20250324.1743.002.
[1] TIAN Sheng, ZHAO Kailong, MIAO Jialin. Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 1-9.
[2] WEI Zishu, CHEN Zhigang, WANG Yanxue, Hasitieer Madetihan. Lightweight Bearing Defect Detection Algorithm Based on SBSI-YOLO11 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 80-91.
[3] LIU Tinghan, LIANG Yan, HUANG Pengsheng, BI Jinjie, HUANG Shoulin, LI Tinghui. Facial Acne Detection for Small Object Based on Improved YOLOv8s [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(5): 114-129.
[4] TANG Liang, CHEN Bowen, NIU Yisen, MA Ronggeng. A YOLOv8-based Real-time Object Detection Method for Vehicles and Pedestrians in Foggy Weather [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 72-83.
[5] GUO Xiangyu, SHI Tianyi, CHEN Yannan, NAN Xinyuan, CAI Xin. Research on Foreign Object Detection in Railway Overhead Contact System Based on YOLO-CDBW Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 56-69.
[6] LIU Yuna, MA Shuangbao. Fabric Defect Detection Based on Improved Lightweight YOLOv8n [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 83-94.
[7] TU Zhirong, LING Haiying, LI Guo, LU Shenglian, QIAN Tingting, CHEN Ming. Lightweight Passion Fruit Detection Method Based on Improved YOLOv7-Tiny [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 79-90.
[8] LÜ Hui, LÜ Weifeng. Fundus Hemorrhagic Spot Detection Algorithm Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 99-107.
[9] ZENG Liang, HU Qian, YANG Tengfei, TAN Weiwei. Substation Personnel Safety Operation Detection Based on L-ConvNeXt Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 102-110.
[10] HUANG Yeqi, WANG Mingwei, YAN Rui, LEI Tao. Surface Quality Detection of Diamond Wire Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 123-134.
[11] LI Yang, GOU Gang. Lightweight Garbage Detection Method Based on Improved YOLOX [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 80-90.
[12] NIU Xuede, GAO Bingpeng, REN Rongrong, XU Mingming. Crop Pestsand Diseases Identification and Android Application Based on Lightweight CNN [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 59-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiaojuan, LIN Lu, HU Yucong, PAN Lei. Research on the Influence of Land Use Types Surrounding Stations on Subway Passenger Satisfaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 1 -12 .
[2] HAN Huabin, GAO Bingpeng, CAI Xin, SUN Kai. Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 13 -28 .
[3] CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29 -41 .
[4] LI Hao, HE Bing. Droplet Rebound Behavior on Grooves Surface[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 42 -53 .
[5] TIAN Sheng, ZHAO Kailong, MIAO Jialin. Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 1 -9 .
[6] HUANG Yanguo, XIAO Jie, WU Shuiqing. Bidirectional Efficient Multi-scale Traffic Flow Prediction Based on D2STGNN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 10 -22 .
[7] LIU Zhihao, LI Zili, SU Min. YOLOv8-based Helmet Detection Method for Electric Vehicle Riders Combining Intelligent Communication and UAV-Assistance[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 23 -32 .
[8] ZHANG Zhulu, LI Huaqiang, LIU Yang, XU Lixiong. Non-intrusive Load Identification Based on Bi-LSTM Feature Fusion and FT-FSL[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 33 -44 .
[9] WANG Tao, LI Yuansong, SHI Rui, CHEN Huining, HOU Xianqing. MGDE-UNet: Defect Segmentation Model for Lightweight Photovoltaic Cells[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 45 -55 .
[10] SHI Zihao, MENG Zuqiang, TAN Chaohong. A Detection Model for Multimodal Fake News Based on Attention Mechanism and Multiscale Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 68 -79 .