Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (1): 102-109.doi: 10.16088/j.issn.1001-6600.2025012401

• Mathematics and Statistics • Previous Articles     Next Articles

Cyclicity of High-order Singular Point Degenerate Hopf Bifurcation for a Class of Three-dimensional Systems

YAO Jie, WANG Qinlong*   

  1. School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin Guangxi 541004, China
  • Received:2025-01-24 Revised:2025-03-14 Online:2026-01-05 Published:2026-01-26

Abstract: In this paper, the degenerate Hopf bifurcation is investigated at high-order singular point in a class of three-dimensional systems. Based on the center manifold theorem, a formal series method for directly calculating singularity quantities is proposed, which avoids the tedious process of converting the original three-dimensional system into the plane reduction equations. The corresponding linear recursive formula of this algorithm is easy to execute. A class of fourth-order system is specifically studied, its center problem of high-order singular points is solved and the cyclicity of degenerate Hopf bifurcation is determined.

Key words: higher-order singularity, degenerate Hopf cyclicity, center problem, singular point quantities

CLC Number:  O175.1
[1] 张芷芬, 丁同仁,黄文社,等. 微分方程定性理论[M]. 北京: 科学出版社, 1985.
[2] 刘一戎, 李继彬. 平面向量场的若干经典问题[M]. 北京: 科学出版社, 2010: 1-29.
[3] 刘一戎. 一类高次奇点与无穷远点的中心焦点理论[J]. 中国科学:A辑, 2001, 31(1): 37-48. DOI: 10.3321/j.issn:1006-9232.2001.01.006.
[4] 黄文韬, 古结平, 王勤龙. 三维微分系统的极限环与等时中心[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 104-126. DOI: 10.16088/j.issn.1001-6600.2022020702.
[5] 黄文韬, 王勤龙, 杜超雄. 三维微分系统中心流形上的等时中心[J]. 数学学报(中文版), 2024, 67(5): 995-1008. DOI: 10.12386/B20210641.
[6] GUO L G, YU P, CHEN Y F. Twelve limit cycles in 3D quadratic vector fields with Z3 symmetry[J]. International Journal of Bifurcation and Chaos, 2018, 28(11): 1850139. DOI: 10.1142/s0218127418501390.
[7] HUANG W T, WANG Q L, CHEN A Y. Hopf bifurcation and the centers on center manifold for a class of three-dimensional Circuit system[J]. Mathematical Methods in the Applied Sciences, 2020, 43(4): 1988-2000. DOI: 10.1002/mma.6026.
[8] LU J P, WANG C Y, HUANG W T, et al. Local bifurcation and center problem for a more generalized Lorenz system[J]. Qualitative Theory of Dynamical Systems, 2022, 21(4): 96. DOI: 10.1007/s12346-022-00629-3.
[9] YU P, HAN M A. Ten limit cycles around a center-type singular point in a 3-d quadratic system with quadratic perturbation[J]. Applied Mathematics Letters, 2015, 44: 17-20. DOI: 10.1016/j.aml.2014.12.010.
[10] ROMANOVSKI V G, SHAFER D S. Centers and limit cycles in polynomial systems of ordinary differential equations[J]. Advanced Studies in Pure Mathematics, 2016, 68: 267-373. DOI: 10.2969/aspm/06810267.
[11] WANG Q L, LIU Y R, CHEN H B. Hopf bifurcation for a class of three-dimensional nonlinear dynamic systems[J]. Bulletin Des SciencesMathématiques, 2010, 134(7): 786-798. DOI: 10.1016/j.bulsci.2009.12.001.
[12] GARCÍA I A. Integrable zero-Hopf singularities and three-dimensionalcentres[J]. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2018, 148(2): 327-340. DOI: 10.1017/s0308210517000026.
[13] ZENG B, YU P. Analysis of zero-Hopf bifurcation in tworössler systems using normal form theory[J]. International Journal of Bifurcation and Chaos, 2020, 30(16): 2030050. DOI: 10.1142/s0218127420300505.
[14] WANG Q L, HUANG W T, LIU Y R. Multiple limit cycles bifurcation from the degenerate singularity for a class of three-dimensional systems[J]. Acta Mathematicae Applicatae Sinica, English Series, 2016, 32(1): 73-80. DOI: 10.1007/s10255-015-0510-4.
[15] PESSOA C, QUEIROZ L. Nilpotent centers from analytical systems on center manifolds[J]. Journal of Mathematical Analysis and Applications, 2023, 525(1): 127120. DOI: 10.1016/j.jmaa.2023.127120.
[16] LLIBRE J, WU H. Hopf bifurcation for degenerate singular points of multiplicity 2n-1 in dimension 3[J]. Bulletin Des Sciences Mathématiques, 2008, 132(3): 218-231. DOI: 10.1016/j.bulsci.2007.01.003.
[17] GARCÍA I A. Small amplitude periodic orbits in three-dimensional quadratic vector fields witha zero-Hopf singularity[J]. Journal of Dynamics and Differential Equations, 2024, 36(2): 1325-1346. DOI: 10.1007/s10884-022-10208-4.
[18] CARR J. Applications of centre manifold theory[M]. New York: Springer, 1981: 1-10.
[1] ZHANG Xiaoqian, WANG Lei. Singular Cycles Bifurcation Leading to Limit Cycles in 2-Dimensional Piecewise Affine Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 98-105.
[2] GAO Yubo, YE Zhaoxian, HUANG Shuai, ZHOU Xia, CHENG Jun. Consensus of Multi-agent Systems with Markov Switching Topology under Cyber-Attacks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 168-178.
[3] PENG Huaqin, WU Zuzheng, WANG Weiying, ZHU Qing. Study of an SIQR Epidemic Model with Vaccination and Isolation under Media Coverage [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 110-116.
[4] LIU Jukun, HUANG Wentao, LIU Hongpu. New Lower Bounds of Limit Cycles for a Class of Three-dimensional Cubic Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 109-115.
[5] HUANG Yanping, WEI Yuming. Multiple Solutions of Multiple-points Boundary Value Problem for a Class of Fractional Differential Equation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 41-49.
[6] WEI Bao-jun, ZHANG Wu-jun, SHI Jin-e. A Weighted Norm Estimates Based on Finite Volume Method for Two-point Boundary Value Problem [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(3): 75-78.
[7] FENG Chun-hua. Periodic Oscillation for a Class of Neural Network Models with n Discrete Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 48-53.
[8] HAO Ping-ping, FENG Chun-hua. Dynamics of a Nicholson's Model with a Nonlinear Density-dependent Mortality Term [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 42-47.
[9] WEI Yu-ming, WANG Yong, TANG Yan-qiu, FAN Jiang-hua. Existence and Uniqueness of Solutions for Delay Boundary Value Problems with p-Laplacian on Infinite Intervals [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 48-53.
[10] ZHAO Hui-wei, LI Wen-hua, FENG Chun-hua, LUO Xiao-shu. Periodic Oscillation Analysis for a Recurrent Neural NetworksModel with Time Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 29-34.
[11] HAO Li-jie, JIANG Gui-rong, LU Peng. Pulse Control and Bifurcation Analysis of a SIRS Epidemic Model with Vertical Transmission [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 42-47.
[12] XUE Jin-dong, FENG Chun-hua. Positive Almost Periodic Solutions for a Class of Integro-differential Equation with Impulses and Infinite Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 48-53.
[13] LI Zhanyong, JIANG Guirong. Some New Results on Lyapunov-branch Theorem [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 128-133.
[14] LÜ Xiaojun, ZHAO Kaihong, LI Rui. Multiple Positive Periodic Solutions of a Discrete Non-autonomousPlankton Allelopathy System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 66-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiaojuan, LIN Lu, HU Yucong, PAN Lei. Research on the Influence of Land Use Types Surrounding Stations on Subway Passenger Satisfaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 1 -12 .
[2] HAN Huabin, GAO Bingpeng, CAI Xin, SUN Kai. Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 13 -28 .
[3] CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29 -41 .
[4] LI Hao, HE Bing. Droplet Rebound Behavior on Grooves Surface[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 42 -53 .
[5] TIAN Sheng, ZHAO Kailong, MIAO Jialin. Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 1 -9 .
[6] HUANG Yanguo, XIAO Jie, WU Shuiqing. Bidirectional Efficient Multi-scale Traffic Flow Prediction Based on D2STGNN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 10 -22 .
[7] LIU Zhihao, LI Zili, SU Min. YOLOv8-based Helmet Detection Method for Electric Vehicle Riders Combining Intelligent Communication and UAV-Assistance[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 23 -32 .
[8] ZHANG Zhulu, LI Huaqiang, LIU Yang, XU Lixiong. Non-intrusive Load Identification Based on Bi-LSTM Feature Fusion and FT-FSL[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 33 -44 .
[9] WANG Tao, LI Yuansong, SHI Rui, CHEN Huining, HOU Xianqing. MGDE-UNet: Defect Segmentation Model for Lightweight Photovoltaic Cells[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 45 -55 .
[10] HUANG Wenjie, LUO Weiping, CHEN Zhennan, PENG Zhixiang, DING Zihao. Research on Lightweight PCB Defect Detection Algorithm Based on YOLO11[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 56 -67 .