Journal of Guangxi Normal University(Natural Science Edition) ›› 2015, Vol. 33 ›› Issue (3): 75-78.doi: 10.16088/j.issn.1001-6600.2015.03.012

Previous Articles     Next Articles

A Weighted Norm Estimates Based on Finite Volume Method for Two-point Boundary Value Problem

WEI Bao-jun, ZHANG Wu-jun, SHI Jin-e   

  1. Institute of Science, Information Engineering University,Zhengzhou Henan 450002,China
  • Received:2015-01-15 Online:2015-05-10 Published:2018-09-20

Abstract: In this paper, based on the local gird size function, a kind of linear weighted function with piecewise smoothness is constructed. A weighted norm estimate based on finite volume method for two-point boundary value problem is obtained. Furthermore, the exact values of error constants are given and more precise error results are obtained, which provides a theoretical basis for error analysis near a singular point.

Key words: finite volume method, weighted function, weighted norm, error estimate

CLC Number: 

  • O175.1
[1] 李荣华.两点边值问题的广义差分法[J].吉林大学自然科学学报,1982(1):26-40.
[2] LI Yong-hai,LI Rong-hua. Generalized difference methods on arbitrary quadrilateral networks[J].Journal of Computational Mathematics,1999,17(6):653-672.
[3] 李永海.抛物方程的一种广义差分法(有限体积法)[J].计算数学,2002,24(4):487-500.
[4] 田明忠,陈仲英.椭圆型方程的广义差分法(二次元)[J].高等学校计算数学学报,1991,13(2): 99-113.
[5] 魏保军,陈绍春.耦合有限元空间上Poisson方程的广义差分法[J].应用数学,2004,17(4): 588-595.
[6] 张栏辉,李永海.基于Lobatto-Gauss结构的五次元有限体积法[J].吉林大学学报:理学版,2014,52(3):397-407.
[7] 范进之,李桦.高精度有限体积法与间断有限元法的比较[J].国防科技大学学报,2014,36(5):33-38.
[8] LI Rong-hua,CHEN Zong-ying,WU Wei. The generalized difference methods for partical differenceal equations:Numerical analysis of finite volume methods[M].New York:Marcel Dikker Inc,2000.
[1] HUANG Yanping, WEI Yuming. Multiple Solutions of Multiple-points Boundary Value Problem for a Class of Fractional Differential Equation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 41-49.
[2] FENG Chun-hua. Periodic Oscillation for a Class of Neural Network Models with n Discrete Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 48-53.
[3] HAO Ping-ping, FENG Chun-hua. Dynamics of a Nicholson's Model with a Nonlinear Density-dependent Mortality Term [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 42-47.
[4] WEI Yu-ming, WANG Yong, TANG Yan-qiu, FAN Jiang-hua. Existence and Uniqueness of Solutions for Delay Boundary Value Problems with p-Laplacian on Infinite Intervals [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 48-53.
[5] LI Zhanyong, JIANG Guirong. Some New Results on Lyapunov-branch Theorem [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 128-133.
[6] LÜ Xiaojun, ZHAO Kaihong, LI Rui. Multiple Positive Periodic Solutions of a Discrete Non-autonomousPlankton Allelopathy System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 66-73.
[7] ZHAO Hui-wei, LI Wen-hua, FENG Chun-hua, LUO Xiao-shu. Periodic Oscillation Analysis for a Recurrent Neural NetworksModel with Time Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 29-34.
[8] HAO Li-jie, JIANG Gui-rong, LU Peng. Pulse Control and Bifurcation Analysis of a SIRS Epidemic Model with Vertical Transmission [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 42-47.
[9] XUE Jin-dong, FENG Chun-hua. Positive Almost Periodic Solutions for a Class of Integro-differential Equation with Impulses and Infinite Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!