Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (1): 102-109.doi: 10.16088/j.issn.1001-6600.2025012401
• Mathematics and Statistics • Previous Articles Next Articles
YAO Jie, WANG Qinlong*
| [1] 张芷芬, 丁同仁,黄文社,等. 微分方程定性理论[M]. 北京: 科学出版社, 1985. [2] 刘一戎, 李继彬. 平面向量场的若干经典问题[M]. 北京: 科学出版社, 2010: 1-29. [3] 刘一戎. 一类高次奇点与无穷远点的中心焦点理论[J]. 中国科学:A辑, 2001, 31(1): 37-48. DOI: 10.3321/j.issn:1006-9232.2001.01.006. [4] 黄文韬, 古结平, 王勤龙. 三维微分系统的极限环与等时中心[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 104-126. DOI: 10.16088/j.issn.1001-6600.2022020702. [5] 黄文韬, 王勤龙, 杜超雄. 三维微分系统中心流形上的等时中心[J]. 数学学报(中文版), 2024, 67(5): 995-1008. DOI: 10.12386/B20210641. [6] GUO L G, YU P, CHEN Y F. Twelve limit cycles in 3D quadratic vector fields with Z3 symmetry[J]. International Journal of Bifurcation and Chaos, 2018, 28(11): 1850139. DOI: 10.1142/s0218127418501390. [7] HUANG W T, WANG Q L, CHEN A Y. Hopf bifurcation and the centers on center manifold for a class of three-dimensional Circuit system[J]. Mathematical Methods in the Applied Sciences, 2020, 43(4): 1988-2000. DOI: 10.1002/mma.6026. [8] LU J P, WANG C Y, HUANG W T, et al. Local bifurcation and center problem for a more generalized Lorenz system[J]. Qualitative Theory of Dynamical Systems, 2022, 21(4): 96. DOI: 10.1007/s12346-022-00629-3. [9] YU P, HAN M A. Ten limit cycles around a center-type singular point in a 3-d quadratic system with quadratic perturbation[J]. Applied Mathematics Letters, 2015, 44: 17-20. DOI: 10.1016/j.aml.2014.12.010. [10] ROMANOVSKI V G, SHAFER D S. Centers and limit cycles in polynomial systems of ordinary differential equations[J]. Advanced Studies in Pure Mathematics, 2016, 68: 267-373. DOI: 10.2969/aspm/06810267. [11] WANG Q L, LIU Y R, CHEN H B. Hopf bifurcation for a class of three-dimensional nonlinear dynamic systems[J]. Bulletin Des SciencesMathématiques, 2010, 134(7): 786-798. DOI: 10.1016/j.bulsci.2009.12.001. [12] GARCÍA I A. Integrable zero-Hopf singularities and three-dimensionalcentres[J]. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2018, 148(2): 327-340. DOI: 10.1017/s0308210517000026. [13] ZENG B, YU P. Analysis of zero-Hopf bifurcation in tworössler systems using normal form theory[J]. International Journal of Bifurcation and Chaos, 2020, 30(16): 2030050. DOI: 10.1142/s0218127420300505. [14] WANG Q L, HUANG W T, LIU Y R. Multiple limit cycles bifurcation from the degenerate singularity for a class of three-dimensional systems[J]. Acta Mathematicae Applicatae Sinica, English Series, 2016, 32(1): 73-80. DOI: 10.1007/s10255-015-0510-4. [15] PESSOA C, QUEIROZ L. Nilpotent centers from analytical systems on center manifolds[J]. Journal of Mathematical Analysis and Applications, 2023, 525(1): 127120. DOI: 10.1016/j.jmaa.2023.127120. [16] LLIBRE J, WU H. Hopf bifurcation for degenerate singular points of multiplicity 2n-1 in dimension 3[J]. Bulletin Des Sciences Mathématiques, 2008, 132(3): 218-231. DOI: 10.1016/j.bulsci.2007.01.003. [17] GARCÍA I A. Small amplitude periodic orbits in three-dimensional quadratic vector fields witha zero-Hopf singularity[J]. Journal of Dynamics and Differential Equations, 2024, 36(2): 1325-1346. DOI: 10.1007/s10884-022-10208-4. [18] CARR J. Applications of centre manifold theory[M]. New York: Springer, 1981: 1-10. |
| [1] | ZHANG Xiaoqian, WANG Lei. Singular Cycles Bifurcation Leading to Limit Cycles in 2-Dimensional Piecewise Affine Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 98-105. |
| [2] | GAO Yubo, YE Zhaoxian, HUANG Shuai, ZHOU Xia, CHENG Jun. Consensus of Multi-agent Systems with Markov Switching Topology under Cyber-Attacks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 168-178. |
| [3] | PENG Huaqin, WU Zuzheng, WANG Weiying, ZHU Qing. Study of an SIQR Epidemic Model with Vaccination and Isolation under Media Coverage [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 110-116. |
| [4] | LIU Jukun, HUANG Wentao, LIU Hongpu. New Lower Bounds of Limit Cycles for a Class of Three-dimensional Cubic Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 109-115. |
| [5] | HUANG Yanping, WEI Yuming. Multiple Solutions of Multiple-points Boundary Value Problem for a Class of Fractional Differential Equation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 41-49. |
| [6] | WEI Bao-jun, ZHANG Wu-jun, SHI Jin-e. A Weighted Norm Estimates Based on Finite Volume Method for Two-point Boundary Value Problem [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(3): 75-78. |
| [7] | FENG Chun-hua. Periodic Oscillation for a Class of Neural Network Models with n Discrete Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 48-53. |
| [8] | HAO Ping-ping, FENG Chun-hua. Dynamics of a Nicholson's Model with a Nonlinear Density-dependent Mortality Term [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 42-47. |
| [9] | WEI Yu-ming, WANG Yong, TANG Yan-qiu, FAN Jiang-hua. Existence and Uniqueness of Solutions for Delay Boundary Value Problems with p-Laplacian on Infinite Intervals [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 48-53. |
| [10] | ZHAO Hui-wei, LI Wen-hua, FENG Chun-hua, LUO Xiao-shu. Periodic Oscillation Analysis for a Recurrent Neural NetworksModel with Time Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 29-34. |
| [11] | HAO Li-jie, JIANG Gui-rong, LU Peng. Pulse Control and Bifurcation Analysis of a SIRS Epidemic Model with Vertical Transmission [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 42-47. |
| [12] | XUE Jin-dong, FENG Chun-hua. Positive Almost Periodic Solutions for a Class of Integro-differential Equation with Impulses and Infinite Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 48-53. |
| [13] | LI Zhanyong, JIANG Guirong. Some New Results on Lyapunov-branch Theorem [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 128-133. |
| [14] | LÜ Xiaojun, ZHAO Kaihong, LI Rui. Multiple Positive Periodic Solutions of a Discrete Non-autonomousPlankton Allelopathy System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 66-73. |
|