Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (2): 168-178.doi: 10.16088/j.issn.1001-6600.2024040204

• Mathematics and Statistics • Previous Articles     Next Articles

Consensus of Multi-agent Systems with Markov Switching Topology under Cyber-Attacks

GAO Yubo1, YE Zhaoxian2, HUANG Shuai1, ZHOU Xia1,3,4*, CHENG Jun5   

  1. 1. School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin Guangxi 541004, China;
    2. School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin Guangxi 541004, China;
    3. Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, Guilin University of Electronic Technology, Guilin Guangxi 541004, China;
    4. Center for Applied Mathematics of Guangxi (Guilin University of Electronic Technology), Guilin Guangxi 541004, China;
    5. School of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2024-04-02 Online:2025-03-05 Published:2025-04-02

Abstract: This paper studies the leader-following consensus problem of nonlinear multi-agent systems under deception attacks of replay attacks, with Markov switching topologies. The Bernoulli random variable is introduced to describe the random occurrence of deception attacks or replay attacks on the system. The communication topologies of multi-agent system are randomly changed due to cyber-attacks, which are modeled as Markov switching topology. Based on stability theory, graph theory, and matrix theory, the sufficient conditions for the consensus of the system are obtained by random analysis method, Lyapunov method, infinitesimal algorithm and so on. The correctness of the results and the effectiveness of the methods are verified by numerical example.

Key words: multi-agent systems, deception attacks, replay attacks, Markov switching topology, leader-following consensus

CLC Number:  O175.1; O231.3
[1] 谢光强, 章云,李杨,等.基于Krause多智能体一致性模型的研究[J].广西师范大学学报(自然科学版),2013,31(3):106-113.DOI: 10.3969/j.issn.1001-6600.2013.03.017.
[2] DAEICHIAN A, HAGHANI A. Fuzzy Q-learning-based multi-agent system for intelligent traffic control by a game theory approach[J]. Arabian Journal for Science and Engineering, 2018, 43(6): 3241-3247. DOI: 10.1007/s13369-017-3018-9.
[3] BEARD R W, LAWTON J, HADAEGH F Y. A coordination architecture for spacecraft formation control[J]. IEEE Transactions on Control Systems Technology, 2001, 9(6): 777-790. DOI: 10.1109/87.960341.
[4] KUMAR NUNNA H S V S, DOOLLA S. Multiagent-based distributed-energy-resource management for intelligent microgrids[J]. IEEE Transactions on Industrial Electronics, 2013, 60(4): 1678-1687. DOI: 10.1109/TIE.2012.2193857.
[5] YE D, ZHANG T Y, GUO G. Stochastic coding detection scheme in cyber-physical systems against replay attack[J]. Information Sciences, 2019, 481: 432-444. DOI: 10.1016/j.ins.2018.12.091.
[6] ZHOU X, CHEN L L, CAO J D, et al. Asynchronous filtering of MSRSNSs with the event-triggered try-once-discard protocol and deception attacks[J]. ISA Transactions, 2022, 131: 210-221. DOI: 10.1016/j.isatra.2022.04.030.
[7] ZHOU X, HUANG C Y, CAO J D, et al. Consensus of NMASs with MSTs subjected to DoS attacks under event-triggered control[J]. Filomat, 2023, 37(17): 5567-5580. DOI: 10.2298/FIL2317567Z.
[8] ZHOU X, HUANG C Y, LI P, et al. Leader-following identical consensus for Markov jump nonlinear multi-agent systems subjected to attacks with impulse[J]. Nonlinear Analysis: Modelling and Control, 2023, 28(5): 995-1019. DOI: 10.15388/namc.2023.28.33003.
[9] ZHOU X, XI M X, LIU W B, et al. Delayed consensus in mean-square of mass under markov switching topologies and brown noise[J]. Journal of Applied Analysis and Computation, 2024, 14(1): 543-559. DOI: 10.11948/20230307.
[10] YOU K Y, LI Z K, XIE L H. Consensus condition for linear multi-agent systems over randomly switching topologies[J]. Automatica, 2013, 49(10): 3125-3132. DOI: 10.1016/j.automatica.2013.07.024.
[11] WANG X, YANG H L, ZHONG S M. Improved results on consensus of nonlinear MASs with nonhomogeneous Markov switching topologies and DoS cyber attacks[J]. Journal of the Franklin Institute, 2021, 358(14): 7237-7253. DOI: 10.1016/j.jfranklin.2021.07.044.
[12] CHENG J, PARK J H, YAN H C, et al. An event-triggered round-robin protocol to dynamic output feedback control for nonhomogeneous Markov switching systems[J]. Automatica, 2022, 145: 110525. DOI: 10.1016/j.automatica.2022.110525.
[13] CHENG J, WU Y Y, WU Z G, et al. Nonstationary filtering for fuzzy Markov switching affine systems with quantization effects and deception attacks[J]. IEEE Transactions on Systems, Man, and Cybernetics. Systems, 2022, 52(10): 6545-6554. DOI: 10.1109/TSMC.2022.3147228.
[14] CHENG J, PARK J H, WU Z G. Finite-Time control of Markov jump Lur’e systems with singular perturbations[J]. IEEE Transactions on Automatic Control, 2023, 68(11): 6804-6811. DOI: 10.1109/TAC.2023.3238296.
[15] 杨珺博,马忠军,李科赞.双层网络上多智能体系统的部分分量一致性[J].控制理论与应用,2023,40(8):1377-1383.DOI: 10.7641/CTA.2023.20561.
[16] 刘雪雪,李丰兵,马忠军.领导-跟随多智能体系统在自适应牵制控制下的部分分量一致性[J].桂林电子科技大学学报,2021,41(3):247-252.DOI: 10.3969/j.issn.1673-808X.2021.03.013.
[17] 马忠军,甘晓亮,蒋贵荣.具有时滞和时变系数的离散多智能体系统的一致性[J].控制与决策,2016,31(10):1785-1790.DOI: 10.13195/j.kzyjc.2015.1193.
[18] 呼文军,马忠军,马梅.领导—跟随多智能体系统在分布式自适应控制下的滞后一致性[J].广西师范大学学报(自然科学版),2018,36(1):70-75.DOI: 10.16088/j.issn.1001-6600.2018.01.009.
[19] WANG Y, MA Z J, ZHENG S, et al.Pinning control of lag-consensus for second-order nonlinear multiagent systems[J]. IEEE Transactions on Cybernetics, 2016, 47(8): 2203-2211. DOI: 10.1109/TCYB.2016.2591518.
[20] MA Z J,WANG Y, LI X M. Cluster-delay consensus in first-order multi-agent systems with nonlinear dynamics[J]. Nonlinear Dynamics, 2016, 83: 1303-1310. DOI: 10.1007/s11071-015-2403-8.
[21] 吴彬彬,马忠军,王毅.领导-跟随多智能体系统的部分分量一致性[J].物理学报,2017,66(6):060201.DOI: 10.7498/aps.66.060201.
[22] 于俊生,马忠军,李科赞.事件触发控制下多智能体系统的部分分量一致性[J].广西师范大学学报(自然科学版),2023,41(4):149-157.DOI: 10.16088/j.issn.1001-6600.2022090401.
[23] 谢媛艳,王毅,马忠军.领导-跟随多智能体系统的滞后一致性[J].物理学报,2014,63(4):040202.DOI: 10.7498/aps.63.040202.
[1] LONG Ziting, MA Zhongjun, LI Kezan. Practical-Component Consensus of Multi-agent Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 139-146.
[2] YU Junsheng, MA Zhongjun, LI Kezan. Event-Triggered Control for Partial Component Consensus of Leader-Following Multi-agent Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 149-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!