Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (1): 139-146.doi: 10.16088/j.issn.1001-6600.2023041202

Previous Articles     Next Articles

Practical-Component Consensus of Multi-agent Systems

LONG Ziting1,2, MA Zhongjun1,3*, LI Kezan1,2   

  1. 1. School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin Guangxi 541004, China;
    2. Center for Applied Mathematics of Guangxi (Guilin University of Electronic Technology), Guilin Guangxi 541004, China;
    3. Guangxi Key Laboratory of Cryptography and Information Security (Guilin University of Electronic Technology), Guilin Guangxi 541004, China
  • Received:2023-04-12 Revised:2023-05-18 Online:2024-01-25 Published:2024-01-19

Abstract: Practical-component consensus refers to the fact that the error of some components of all state variables in a multi-agent system always fluctuate within a bounded interval. In this paper, the practical-component consensus problem of a first-order nonlinear leader-follower multi-agent system is explored based on a directed network topology. Firstly, a segmented pinning control protocol is constructed for the system. Then, the original error system is transformed into a new error system by using the method of permutation matrix, so that the practical-component consensus problem of the original system is transformed into a strong practical stability problem with zero solutions in the new error system, and the sufficient conditions for the practical-component consensus of the system is derived with the knowledge of matrix theory and stability theory. Finally, the numerical simulation verifies the correctness of the theoretical results.

Key words: multi-agent systems, practical consensus, partial component consensus, leader-following

CLC Number:  O231
[1] OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533.
[2] 翁小雄,谢志鹏.基于多层复杂网络的高速公路节点重要性研究[J].广西师范大学学报(自然科学版), 2021, 39(5): 78-88.
[3] WANG Y, MA Z J, CHEN G R. Avoiding congestion in cluster consensus of the second-order nonlinear multiagent systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018,29(8):3490-3498.
[4] 李珏璇, 赵明. 网络的平均度和规模对部分同步状态的影响[J].广西师范大学学报(自然科学版), 2019, 37(1): 115-124.
[5] WEI Q L, WANG X, ZHONG X N, et al. Consensus control of leader-following multi-agent systems in directed topology with heterogeneous disturbances[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(2): 423-431.
[6] 宋晓欣, 李德权.复杂多个体系统领导者-跟随一致性研究[J]. 广西师范大学学报(自然科学版),2010, 28(4): 9-14.
[7] BRAGAGNOLO M C, MORAÄRESCU L C, DAAFOUZ J,et al. Reset strategy for consensus in networks of cluster[J]. Automatica, 2016, 65(2): 53-63.
[8] 谢媛艳,王毅,马忠军. 领导-跟随多智能体系统的滞后一致性[J]. 物理学报, 2014, 63(4): 040202.
[9] 呼文军,马忠军,马梅.领导-跟随多智能体系统在分布式自适应控制下的滞后一致性[J].广西师范大学学报(自然科学版),2018, 36(1): 70-75.
[10] DONG X W, XI J X, SHI Z Y, et al. Practical consensus for high-order linear time-invariant swarm systems with interaction uncertainties, time-varying delays and external disturbances[J]. International Journal of Systems Science, 2013, 44(10): 1843-1856.
[11] DING L, ZHENG W X. Network-based practical consensus of heterogeneous nonlinear multiagent systems[J]. IEEE Transactions on Cybernetics, 2017, 47(8): 1841-1851.
[12] BERNUAU E, MOULAY E, COIRAULT P,et al. Practical consensus of homogeneous sampled-data multiagent systems[J]. IEEE Transactions on Automatic Control, 2019, 64(11): 4691-4697.
[13] 张文, 马忠军, 王毅. 带未知耦合权重的领导-跟随多智能体系统的实用一致性[J]. 自动化学报, 2018, 44(12): 2300-2304.
[14] 陈世明, 姜根兰, 张正. 通信受限的多智能体系统二分实用一致性[J]. 自动化学报, 2022, 48(5): 1318-1326.
[15] 吴彬彬, 马忠军, 王毅. 领导-跟随多智能体系统的部分分量一致性[J]. 物理学报, 2017, 66(6): 060201.
[16] HU W J, ZHANG W, MA Z J, et al. Partial component consensus analysis of second-order and third-order nonlinear multi-agent systems[J]. Physica A: Statistical Mechanics and Its Applications, 2022, 593: 126857.
[17] LI F B, MA Z J, DUAN Q C. Clustering component synchronization in a class of unconnected networks via pinning control[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 525: 394-401.
[18] 于俊生, 马忠军, 李科赞. 事件触发控制下多智能体系统的部分分量一致性[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 149-157.
[19] 廖晓昕. 稳定性的数学理论及应用[M]. 2版. 武汉: 华中师范大学出版社, 2001: 19-20, 321-322, 336-337.
[20] BHATIA R. Matrix analysis[M]. New York: Springer, 1997.
[1] YU Junsheng, MA Zhongjun, LI Kezan. Event-Triggered Control for Partial Component Consensus of Leader-Following Multi-agent Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 149-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LUO Yun-yan, LI Rong-zheng, LI Bing, DING Chen-xu. Optimization of Extraction Process of Alkaloids from Meconopsis horridula Hook. f. & Thomson by Response Surface Methodology[J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(4): 84 -90 .
[2] DONG Shulong, MA Jiangming, XIN Wenjie. Research Progress and Trend of Landscape Visual Evaluation —Knowledge Atlas Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 1 -13 .
[3] GUO Jialiang, JIN Ting. Semantic Enhancement-Based Multimodal Sentiment Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 14 -25 .
[4] WU Zhengqing, CAO Hui, LIU Baokai. Chinese Fake Review Detection Based on Attention Convolutional Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 26 -36 .
[5] LIANG Zhengyou, CAI Junmin, SUN Yu, CHEN Lei. Point Cloud Classification Based on Residual Dynamic Graph Convolution and Feature Enhancement[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 37 -48 .
[6] OUYANG Shuxin, WANG Mingjun, RONG Chuitian, SUN Huabo. Anomaly Detection of Multidimensional QAR Data Based on Improved LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 49 -60 .
[7] LI Yiyang, ZENG Caibin, HUANG Zaitang. Random Attractors for Chemostat Model with Wall Attachment Driven by Fractional Brownian Motion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 61 -68 .
[8] LI Pengbo, LI Yongxiang. Radial Symmetric Solutions of p-Laplace Equations on Exterior Domains[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 69 -75 .
[9] WU Zixian, CHENG Jun, FU Jianling, ZHOU Xinwen, XIE Jialong, NING Quan. Analysis of PI-based Event-Triggered Control Design for Semi-Markovian Power Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 76 -85 .
[10] CHENG Lei, YAN Puxuan, DU Bohao, YE Si, ZOU Huahong. Thermal Stability and Dielectric Relaxation of MOF-2 Synthesized in Aqueous Phase[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 86 -95 .