Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (1): 128-138.doi: 10.16088/j.issn.1001-6600.2023032404
Previous Articles Next Articles
WANG Yongjie, GAO Xinghui*, FANG Mengkai
[1] AUBIN J P, EKELAND I. Applied nonlinear analysis[M]. New York: Wiley, 1984. [2] ZHOU H Y, QIN X L. Fixed points of nonlinear operators[M]. Berlin: De Gruyter, 2020. [3] KONNOV I. Combined relaxation methods for variational inequalities[M]. Berlin: Springer, 2001. [4] XU H K. Iterative algorithms for nonlinear operators[J]. Journal of the London Mathematical Society, 2002, 66(1): 240-256. [5] TAN B, FAN J J, QIN X L. Inertial extragradient algorithms with non-monotonic step sizes for solving variational inequalities and fixed point problems[J]. Advances in Operator Theory, 2021, 6(4): 61. [6] YEKINI S, OLANIYI S I. Strong convergence result for monotone variational inequalities[J]. Numerical Algorithms, 2017, 76: 259-282. [7] NOOR M A, On iterative methods for solving a system of mixed variational inequalities[J]. Applicable Analysis, 2008, 87(1): 99-108. [8] SIBONY M. Méthodes itératives pour les équations et inéquations aux dérivees partielles on linéaires de type monotone[J]. Calcolo, 1970, 7(1): 65-183. [9] KORPELEVICH G M. The extragradient method for finding saddle points and other problems[J]. Matecon, 1976, 12(4): 747-756. [10] CENSOR Y, GIBALI A, REICH S. The subgradient extragradient method for solving variational inequalities in Hilbert space[J]. Journal of Optimization Theory and applications, 2011, 148(2): 318-335. [11] TSENG P. A modified forward-backward splitting method for maximal monotone mappings[J]. SIAM Journal on Control and Optimization, 2000, 38(2): 431-446. [12] FAN J J, QIN X L. Weak and strong convergence of inertial Tseng’s extragradient algorithms for solving variational inequality problems[J]. Optimization, 2021, 70(5/6): 1195-1216. [13] THONG D V, HIEU D V. Modified Tseng’s extragradient algorithms for variational inequality problems[J]. Journal of Fixed Point Theory and Applications, 2018, 20(4): 152. [14] 胡绍涛,王元恒,蔡钢.Hilbert空间上关于伪单调变分不等式问题的新Tseng外梯度算法[J/OL].数学学报(中文版):1-10[2023-03-16]. http://kns.cnki.net/kcms/detail/11.2038.O1.20220613.0916.004.html. [15] THONG D V, VUONG P T. Modified Tseng’s extragradient methods for solving pseudo-monotone variational inequalities[J]. Optimization, 2019, 68(11): 2202-2226. [16] 谢忠兵,蔡钢,李肖肖,等.Hilbert空间中求解伪单调变分不等式的自适应次梯度外梯度法[J].数学学报(中文版),2023,66(4): 693-706. [17] 刘丽平,彭建文.求解变分不等式和不动点问题的公共元的修正次梯度外梯度算法[J].数学物理学报,2022,42(5):15-17-1536. [18] 杨静,龙宪军.关于伪单调变分不等式与不动点问题的新投影算法[J].数学物理学报,2022,42(3):904-919. [19] 郭丹妮,蔡钢.变分不等式和不动点问题的新迭代算法[J].数学学报(中文版),2022,65(1):77-88. [20] 蔡钢.Hilbert空间中关于变分不等式问题和不动点问题的粘性隐式中点算法[J].数学物理学报,2020, 40(2):395-407. [21] ZHAO T Y, WANG D Q, CENG L C, et al. Quasi-inertial Tseng’s extragradient algorithms for pseudomonotone variational inequalities and fixed point problems of quasi-nonexpansive operators[J]. Numerical Functional Analysis and Optimization, 2021, 42(1): 69-90. [22] DIZA J B, METCALF F T. On the set of subsequential limit points of successive approximations[J]. Transactions of the American Mathematical Society, 1969, 135: 459-485. [23] THONG D V, HIEU D V. Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems[J]. Numerical Algorithms, 2019, 80(4): 1283-1307. [24] GOEBEL K, REICH S. Uniform convexity,hyperbolic geometry,and nonexpansive mappings[M]. New York: Marcel Dekker, 1983. [25] MAINGÉ P E. Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization[J]. Set-Valued Analysis, 2008, 16(7): 899-912. [26] YANG J, LIU H W. Strong convergence result for solving monotone variational inequalities in Hilbert space[J]. Numerical Algorithms, 2019, 80(3): 741-752. [27] BLUM E, OETTLI W. From optimization and variational inequalities to equilibrium problems[J]. Mathematics Student, 1994, 63(1/2/3/4): 123-145. [28] KINDERLEHRER D, STAMPACCHIA G. An introduction to variational inequalities and their applications[M]. Philadelphia: Society for Industrial and Apptied Mathematics, 1980. [29] LIU L Y, QIN X L. Strong convergence theorems for solving pseudo-monotone variational inequality problems and applications[J]. Optimization, 2022, 71(12): 3603-3626. |
[1] | XU Ziwen. New Double Projection Algorithms for Non-monotone Variational Inequality Problems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 52-58. |
[2] | ZHU Yaping, QU Guorong, FAN Jianghua. The Existence of Solutions for Quasi-variational Inequalities by Using the Fixed Point Index Approach [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 79-85. |
[3] | TANG Guoji. Solvability for Generalized Mixed Variational Inequalities with Perturbation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 76-83. |
|