Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (1): 120-127.doi: 10.16088/j.issn.1001-6600.2023032403
Previous Articles Next Articles
HU Kailun, CHEN Min, LUO Hong*
[1] ALFVÉN H. Existence of electromagnetic-hydrodynamic waves[J]. Nature, 1942, 150(3805): 405-406. [2] SERMANGE M, TEMAM R. Some mathematical questions related to the MHD equations[J]. Communications on Pure and Applied Mathematics, 1983, 36(5): 635-664. [3] 张尊尊. 不可压MHD方程组的一个条件正则性准则[J]. 温州大学学报(自然科学版), 2023, 44(1): 21-28. [4] REN X X, WU J H, XIANG Z Y, et al. Global existence and decay of smooth solution for the 2-D MHD equations without magnetic eiffusion[J]. Journal of Functional Analysis, 2014, 267(2): 503-541. [5] BOARDMAN N, LIN H X, WU J H. Stabilization of a background magnetic field on a 2 dimensional magnetohydrodynamic flow[J]. SIAM Journal on Mathematical Analysis, 2020, 52(5): 5001-5035. [6] LIN H X, JI R H, WU J H, et al. Stability of perturbations near a back-ground magnetic field of the 2D incompressible MHD equations with mixed partial dissipation[J]. Journal of Functional Analysis, 2020, 279(2): 108519. [7] ZHAO J F. Global regularity for solutions to 2D generalized MHD equations with multiple exponential upper bound uniformly in time[J]. Journal of Mathematical Analysis and Applications, 2022, 514(1): 126306. [8] 佘连兵, 高云龙. 无界域上非自治Navier-Stokes方程的后向紧动力学[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 41-46. [9] 张杰, 李晓军. 无界域上非自治随机反应扩散方程一致随机吸引子的存在性[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 134-143. [10] YUAN Z Q, GUO L, LIN G G. Global attractors and dimension estimation of the 2D generalized MHD system with extra force[J]. Applied Mathematics, 2015, 6(4): 724-736. [11] AI C F, TAN Z, ZHOU J F. Global well-posedness and existence of uniform attractor for magnetohydrodynamic equations[J]. Mathematical Methods in the Applied Sciences, 2020, 43(12): 7045-7069. 635-664. [12] CATANIA D. Global attractor and determining modes for a hyperbolic MHD turbulence model[J]. Journal of Turbulence, 2011, 12(12): 1-20. [13] 柴晓娟. 几个流体动力学方程的渐近行为[D]. 合肥:安徽大学, 2016. [14] RUAN T W, JIANG Q, LUO H. Regularity of global attractor for the damped Navier-Stokes equations[J]. Mathematica Applicate, 2020, 33(2): 443-448. [15] 马天. 偏微分方程理论与方法[M]. 北京: 科学出版社, 2011: 158-186. [16] 朱凯旋, 孙涛, 谢永钦. 带有分布导数的反应扩散方程在Rn中全局吸引子的存在性[J]. 数学物理学报, 2023, 43(1): 82-92. [17] PAZY A. Semigroups of linear operators and applications to partial differential equations[M]. New York: Springer-Verlag, 1983. [18] LUO H, PU Z L. Existence and regularity of solutions to model for liquid mixture of 3He-4he[J]. Acta Mathematica Scientia, 2012, 32(06): 2161-2175. [19] 潘娇娇, 罗宏. 高阶Allen-Cahn系统吸引子的正则性[J]. 四川师范大学学报(自然科学版), 2021, 44(3): 323-328. [20] ANDERSON D M, MCFADDEN G B, WHEELER A A. Diffuse-interface methods in fluid mechanics[J]. Annual Review of Fluid Mechanics, 1998, 30(1): 139-165. [21] TEMAM R. Infinite-dimensional dynamical systems in mechanics physics[M]. New York: Springer-Verlag, 1997: 10-15. [22] KATO T, PONCE G. Commutator estimates and the Euler and Navier-Stokes equations[J]. Communications on Pure and Applied Mathematics, 1988, 41(7): 891-907. |
[1] | ZHONG Ying, WEI Yuming. A Predator-Prey Model with Mixed Functional Responses and Markov Switching in a Contaminated Environment [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 135-148. |
[2] | ZHAO Ming, LUO Qiulian, CHEN Weimeng, CHEN Jiani. Influence of Control Timing and Strength on the Spreading of Epidemic [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 86-97. |
[3] | SONG Bing, ZHANG Yuru, SANG Yuan, ZHANG Long. Stability of an HIV Immune Model with Saturation Incidence and Distributed Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 106-117. |
[4] | LIU Jukun, HUANG Wentao, LIU Hongpu. New Lower Bounds of Limit Cycles for a Class of Three-dimensional Cubic Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 109-115. |
[5] | HUANG Wentao, GU Jieping, WANG Qinlong. Limit Cycles and Isochronous Centers of Three-dimensional Differential Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 104-126. |
[6] | SHAO Huiting, YANG Qigui. Complex Dynamics of a Six-dimensional Hyperchaotic System with Four Positive Lyapunov Exponents [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 433-444. |
[7] | YAN Sha. Global Existence of Solutions for a Three Species Predator-prey Model with Cross-diffusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 125-131. |
[8] | ZUO Jiabin, YUN Yongzhen. Anti-periodic Boundary Value Problem for a Class of Fractional Differential Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 56-64. |
[9] | WANG Yue, YE Hongyan, LEI Jun, SUO Hongmin. Infinitely Many Classical Solutions for Kirchhoff Type Problem with Linear Term [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 65-73. |
[10] | HUANG Chunxian, ZHOU Xiaoliang. Bifurcation Analysis of an SIRS Epidemic Model with Graded Cure and Incomplete Recovery Rates [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 74-81. |
[11] | ZHENG Tao, ZHOU Xinran, ZHANG Long. Global Asymptotic Stability of Predator-Competition-Cooperative Hybrid Population Models of Three Species [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 64-70. |
[12] | HE Dongping,HUANG Wentao ,WANG Qinlong. Limit Cycle Flutter and Chaostic Motion of Two-Dimensional Airfoil System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 87-95. |
[13] | ZHANG Yijin. Random Dynamics for Stochastic Delay Lattice Systems in Xρ Space [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 106-110. |
[14] | MIAO Xinyan, ZHANG Long, LUO Yantao, PAN Lijun. Study on a Class of Alternative Competition-Cooperation Hybrid Population Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 25-31. |
[15] | HUANG Kaijiao, XIAO Feiyan. A Stochastic Predator-prey System with Beddington-DeAngelis Functional Response [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 32-40. |
|