Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (2): 179-192.doi: 10.16088/j.issn.1001-6600.2024030402

• Mathematics and Statistics • Previous Articles     Next Articles

Local Maximum Likelihood Estimation of Heterogeneous Features with Spatial Autocorrelation and Its Application in Protection of Hand-Foot-Mouth Disease

YANG Xiaolan, ZHANG Huiguo*, HU Xijian   

  1. School of Mathematics and Systems Sciences, Xinjiang University, Urumqi Xinjiang 830017, China
  • Received:2024-03-04 Revised:2024-05-16 Online:2025-03-05 Published:2025-04-02

Abstract: Spatial autoregressive models are widely used for correlation analysis of spatial data, setting the spatial autoregression coefficient as a global constant to model the homogeneous features of spatial autocorrelation, but cannot be used to analyze the locally heterogeneous spatial autocorrelation features within the study area. In this paper, a class of heterogeneous spatial autoregressive varying coefficient models is studied, and the local constant maximum likelihood and local linear maximum likelihood estimation methods of the heterogeneous spatial autoregressive varying coefficient models are proposed by setting the spatial autocorrelation regression coefficient in the models as varying coefficient function that changes with geographical location to realize the modeling of local heterogeneous features and nonstationary regression relations of spatial autocorrelation at the same time. Through numerical simulation, the results show that the local linear maximum likelihood estimation and local constant maximum likelihood estimation methods have consistency and effectiveness under finite samples, and the model and estimation method proposed in this paper have good performance. The proposed models and methods are used to analyze hand-foot-mouth disease (HFMD) incidence and influencing factors based on data within the territory of China in 2018. It is found that the local spatial autocorrelation of each province shows a trend of being higher in the west and lower in the central eastern regions. The extent of the impact of each influencing factor on the incidence of HFMD also varies with spatial location.

Key words: heterogeneous spatial varying coefficient autoregressive model, spatial autocorrelation heterogeneity, local constant maximum likelihood, local linear maximum likelihood, hand-foot-mouth disease

CLC Number:  O212.1
[1] CLIFF A D, ORD J K. Spatial autocorrelation[M]. London: Pion, 1973.
[2] KELEJIAN H H, PRUCHA I R, YUZEFOVICH Y. Instrumental variable estimation of a spatial autoregressive model with autoregressive disturbances: large and small sample results[M] // LESAGE J P, KELLEY PACE R. Spatial and Spatiotemporal Econometrics. Leeds: Emerald Group Publishing Limited, 2004: 163-198. DOI: 10.1016/S0731-9053(04)18005-5.
[3] LEE L F. Best spatial two-stage least squares estimators for a spatial autoregressive model with autoregressive disturbances[J]. Econometric Reviews, 2003, 22(4): 307-335. DOI: 10.1081/ETC-120025891.
[4] LEE L F. Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models[J]. Econometrica, 2004, 72(6): 1899-1925. DOI: 10.1111/j.1468-0262.2004.00558.x.
[5] 方丽婷.空间滞后模型的贝叶斯估计[J].统计研究,2014,31(5):102-106.DOI: 10.3969/j.issn.1002-4565.2014.05.015.
[6] QIN Y S. Empirical likelihood for spatial autoregressive models with spatial autoregressive disturbances[J]. Sankhya A, 2021, 83(1): 1-25. DOI: 10.1007/s13171-019-00166-3.
[7] 秦永松,雷庆祝.空间计量经济模型的经验似然研究进展[J].广西师范大学学报(自然科学版),2022,40(5):138-149.DOI: 10.16088/j.issn.1001-6600.2022012002.
[8] 曾庆樊,秦永松,黎玉芳.一类空间面板数据模型的经验似然推断[J].广西师范大学学报(自然科学版),2022,40(1):30-42.DOI: 10.16088/j.issn.1001-6600.2021060918.
[9] 候瑞环,王沁,李裕奇.含辅助信息的最小非参似然比估计和检验[J].四川师范大学学报(自然科学版),2016,39(1):59-64.DOI: 10.3969/j.issn.1001-8395.2016.01.010.
[10] 魏传华,胡晶,吴喜之.空间自相关地理加权回归模型的估计[J].数学的实践与认识,2010,40(22):126-134.
[11] SUN Y, YAN H J, ZHANG W Y, et al. A semiparametric spatial dynamic model[J]. The Annals of Statistics, 2014, 42(2): 700-727. DOI: 10.1214/13-A051201.
[12] WEI H J, YAN S. Heteroskedasticity-robust semi-parametric GMM estimation of a spatial model with space-varying coefficients[J]. Spatial Economic Analysis, 2017, 12(1): 113-128. DOI: 10.1080/17421772.2017.1250940.
[13] SU L J. Semiparametric GMM estimation of spatial autoregressive models[J]. Journal of Econometrics, 2012, 167(2): 543-560. DOI: 10.1016/j.jeconom.2011.09.034.
[14] CASETTI E. Generating models by the expansion method: applications to geographical research[J]. Geographical Analysis, 1972, 4(1): 81-91. DOI: 10.1111/j.1538-4632.1972.tb00458.x.
[15] ZHANG C S, LUO L, XU W L, et al. Use of local Moran’s I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland[J]. Science of the Total Environment, 2008, 398(1/2/3): 212-221. DOI: 10.1016/j.scitotenv.2008.03.011.
[16] XIE Z X, YAN J. Detecting traffic accident clusters with network kernel density estimation and local spatial statistics: an integrated approach[J]. Journal of Transport Geography, 2013, 31: 64-71. DOI: 10.1016/j.jtrangeo.2013.05.009.
[17] HE W, WANG L Y, YU W J, et al. Prevalence and spatial distribution patterns of human echinococcosis at the township level in Sichuan Province, China[J]. Infectious Diseases of Poverty, 2021, 10(1): 82. DOI: 10.1186/s40249-021-00862-z.
[18] LIU Q Y, WU Y H, ZHOU Y Z, et al. A novel method to analyze the spatial distribution and potential sources of pollutant combinations in the soil of Beijing urban parks[J]. Environmental Pollution, 2021, 284: 117191. DOI: 10.1016/j.envpol.2021.117191.
[19] BRUNSDON C, FOTHERINGHAM A S, CHARLTON M. Spatial nonstationarity and autoregressive models[J]. Environment and Planning A: Economy and Space, 1998, 30(6): 957-973. DOI: 10.1068/a300957.
[20] GENIAUX G, MARTINETTI D. A new method for dealing simultaneously with spatial autocorrelation and spatial heterogeneity in regression models[J]. Regional Science and Urban Economics, 2018, 72: 74-85. DOI: 10.1016/j.regsciurbeco.2017.04.001.
[21] MEI C L, CHEN F. Detection of spatial heterogeneity based on spatial autoregressive varying coefficient models[J]. Spatial Statistics, 2022, 51: 100666. DOI: 10.1016/j.spasta.2022.100666.
[22] 魏传华,王韶郡,苏宇楠.空间变系数地理加权自回归模型的局部GMM估计[J].统计与信息论坛,2022,37(11):3-13.DOI: 10.3969/j.issn.1007-3116.2022.11.001.
[23] CHADSUTHI S, WICHAPENG S. The modelling of hand, foot, and mouth disease in contaminated environments in Bangkok, Thailand[J]. Computational and Mathematical Methods in Medicine, 2018, 2018: 5168931. DOI: 10.1155/2018/5168931.
[1] LI Can, YANG Jianbo, LI Rong. Bayesian Composite Quantile Regression for a Partially Linear Variable Coefficient Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 117-129.
[2] TANG Jie, QIN Yongsong. Adjusted Empirical Likelihood for Spatial Autoregressive Models with Spatial Autoregressive Disturbances [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 100-114.
[3] CAI Xuefeng, LI Tianjun, HUANG Lei. Research on Proportion of Out-of-Pocket Medical Expenses Based on Non-parametric Test and Multivariate Regression [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 115-123.
[4] ZHANG Zhifei, DUAN Qian, LIU Naijia, HUANG Lei. High-dimensional Nonlinear Regression Model Based on JMI [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 43-56.
[5] CHEN Zhongxiu, ZHANG Xingfa, XIONG Qiang, SONG Zefang. Estimation and Test for Asymmetric DAR Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 68-81.
[6] LIU Yu, ZHOU Wen, LI Ni. Semiparametric Rate Models for Recurrent Event Data with Cure Rate via Empirical Likelihood [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 139-149.
[7] ZHU Enwen, ZHU Anqi, WANG Jiedan, LIU Yujiao. Research on Wind Power Short-term Prediction Based on EEMD-GA-BP Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 166-174.
[8] YAN Haibo, DENG Gang, JIANG Yunlu. Robust Estimation of Multivariate Linear Regression Model Based on MRCD Estimation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 175-186.
[9] LIANG Xin, CHEN Xiaoling, ZHANG Xingfa, LI Yuan. A Class of Autoregressive Moving Average Model with GARCH Type Errors [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 195-205.
[10] TIAN Zhentao, ZHANG Junjian. Quantile Feature Screening for Ultra High Dimensional Censored Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 99-111.
[11] XIE Donglin, DENG Guohe. Pricing Forward-start Power Options with Product of Two Assets in a Stochastic Interest Rate and Jump Diffusion Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 158-172.
[12] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68-78.
[13] LIN Song, YIN Changming. Asymptotic Properties of Estimation of Penalized Generalized Estimating Equations for Two Stage Logit Models [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 126-130.
[14] HE Lin, YANG Shanchao. Asymptotic Variance Edge Frequency Polygons Estimator for α-Mixing Random Fields [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 88-94.
[15] LEI Qingzhu,QIN Yongsong,LUO Min. Empirical Bayes Estimation and Test for Scale ExponentialFamilies under Strong Mixing Samples [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 63-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!