Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (1): 195-205.doi: 10.16088/j.issn.1001-6600.2021083003
Previous Articles Next Articles
LIANG Xin1*, CHEN Xiaoling1, ZHANG Xingfa1,2, LI Yuan1,2
CLC Number:
[1] ENGLE R F. Autoregressive conditional heteroscdeasticity with estimates of the variance of united kingdom inflation[J]. Econometrica, 1982, 50(4): 987-1007. [2]BOLLERSLEV T. Generalized autoregressive conditional heteroskedasticity[J].Journal of Econo-metrics, 1986, 31(3): 307-327. [3]KUESTER K, MITTNIK S, PAOLELLA M S. Value-at-risk prediction: a comparison of alternative strategies[J]. Journal of Financial Econometrics, 2006, 4(1): 53-89. [4]FRANCQ C, ZAKOïAN J. GARCHmodels: structure, statistical inference and financial applications[M]. Chichester: John Wiley and Sons Ltd., 2010. [5]ZHU K, LING S. Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models[J]. The Annals of Statistics, 2011, 39(4): 2131-2163. [6]王娟.国际市场现货价格与期货价格指数波动的GARCH族分析[J].统计与决策,2015(16): 160-162. [7]姚登宝,刘晓星,张旭. 市场流动性与市场预期的动态相关结构研究:基于ARMA-GJR-GARCH-Copula模型分析[J]. 中国管理科学,2016,24(2):1-10. [8]杜泉莹,徐美萍. 基于ARMA-GARCH-t和Black-Litterman模型的资产投资组合研究[J]. 广西师范大学学报(自然科学版),2018,36(4): 67-75. [9]樊鹏英,兰勇,陈敏.高频数据下基于PGARCH模型的VaR估计方法及应用[J].系统工程理论与实践,2017,37(8): 2052-2059. [10]吴思鑫,冯牧,张虎, 等.基于高频数据的非平稳 GARCH(1,1)模型的拟极大指数似然估计[J]. 中国科学: 数学,2018,48(3): 443-456. [11]李莉丽,张兴发,李元, 等. 基于高频数据的日频GARCH模型估计[J]. 广西师范大学学报(自然科学版),2021,39(4): 68-78. [12]LING S Q. A double AR(p) model: structure and estimation[J].Statistica Sinica, 2007, 17(1): 161-175. [13]AKNOUCHE A, DEMOUCHE N. Ergodicity conditions for a double mixed Poisson autoregression[J]. Statistics & Probability Letters, 2019, 147(4):6-11. [14]LING S Q, LI D. Asymptotic inference on a non-stationary double AR(1) model[J]. Biometrika, 2008, 95(1): 257-263. [15]ZHU Q Q, ZHENG Y, LI G D. Linear double autoregression[J]. Journal of Econometrics, 2018, 207(1): 162-174. [16]KWOK S S M, LI W K. A note on diagnostic checking of the double autoregressive model[J].Journal of Statistical Computation and Simulation, 2009, 79(5): 705-715. [17]CHEN M, LI D, LING S Q. Non-stationarity and quasi-maximum likelihood estimation on a double autoregressive model[J].Journal of Time Series Analysis, 2014, 35(3): 189-202. [18]CHANG F, WONG A C M, WU Y Y. Asymptotic inference for the weak stationary double AR(1) model[J]. Open Journal of Statistics, 2012, 2(2): 141-152. [19]LIU J. Structure of a double autoregressive process driven by a hidden Markov chain[J]. Statistics & Probability Letters, 2012, 82(7): 1468-1473. [20]GUO S J, LING S Q, ZHU K. Factor double autoregressive models with application to simultaneous causality testing[J]. Journal of Statistical Planning and Inference, 2014, 148(5): 82-94. [21]ZHU H F, ZHANG X F, LIANG X, et al. Moving average model with an alternative GARCH-type error[J]. Journal of Systems Science and Information, 2018, 6(2): 165-177. [22]KOSOROK, M.R. Introduction toempirical processes and semiparametric inference[M]. New York: Springer, 2008. [23]AMEMIYA T. Advanced econometrics[M]. Cambridge: Harvard University Press, 1985. |
[1] | CHEN Zhongxiu, ZHANG Xingfa, XIONG Qiang, SONG Zefang. Estimation and Test for Asymmetric DAR Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 68-81. |
[2] | ZHENG Li-xia, YANG Shan-chao, WANG Zhang-jun. The Bahadur Representation of KL Quantile Estimation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 80-85. |
|