Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (1): 187-194.doi: 10.16088/j.issn.1001-6600.2021060915

Previous Articles     Next Articles

Sample Size Determination for the Additive Hazards Model with Current Status Data

KONG Lingtao*, SONG Xiangjun, WANG Xiaomin   

  1. School of Statistics, Shandong University of Finance and Economics, Jinan Shandong 250014, China
  • Received:2021-06-09 Revised:2021-08-10 Online:2022-01-25 Published:2022-01-24

Abstract: Power and sample size calculations are important and necessary parts in the design stage of a scientific study. In the failure time data analysis, the additive hazards model, which specifies that the covariates have an additive effect on the baseline risk, is one of the most popular used semiparametric models. Compared with the proportional hazards model, the additive hazards model would be more plausible in many applications, especially in the two-sample situation where the covariate takes value only 0 or 1. In this paper, a novel method is proposed for calculating power and sample size for the additive hazards model with current status data based on the Wald test. The simulation studies demonstrate that the proposed sample size formula is adequate. Moreover, a real example is presented to illustrate the application of the proposed formula.

Key words: additive hazards model, power, current status data, sample size

CLC Number: 

  • O212.6
[1] ROSSINI A J, TSIATIS A A. A semiparametric proportional odds regression model for the analysis of current status data[J]. Journal of the American Statistical Association, 1996, 91: 713-721.
[2]JEWELL N P, van der LAAN M. Generalizations of current status data with applications[J]. Lifetime Data Analysis, 1995, 1: 101-110.
[3]LIN D Y, OAKES D, YING Z. Additive hazards regression with current status data[J]. Biometrika, 1998, 85: 289-298.
[4]SUN J. The Statistical analysis of interval-censored failure time data[M]. New York: Springer, 2006.
[5]CHOW S C, SHAO J, WANG H S, et al. Sample size calculations in clinical research[M]. New York: Taylor & Francis, 2018.
[6]胡桂华, 范署姗, 吴婷. 基于设计效应的人口普查质量评估调查样本量测算[J]. 统计与信息论坛, 2020, 35(10): 12-21.
[7]褚红玲, 周云仙, 倪凯文, 等. 基于信息效能模型定性访谈的样本量确定[J]. 中国全科医学, 2021, 24(10): 1274-1276,1283.
[8]邢星, 吴莹, 陈平雁. 配对设计中缺乏差值标准差情况下的样本量估计策略[J]. 中国卫生统计, 2021, 38(2): 181-182,187.
[9]SCHOENFELD D A. Sample-size formula for the proportional-hazards regression model[J]. Biometrics, 1983, 39: 499-503.
[10]WANG S, ZHANG J, LU W. Sample size calculation for the proportional hazards model with a time-dependent covariate[J]. Computational Statistics and Data Analysis, 2014, 74: 217-227.
[11]WILLIAMSON J M, LIN H M, KIM H Y. Power and sample size calculations for current status data[J]. Statistics in Medicine, 2009, 28: 1999-2011.
[12]WEN C C, CHEN Y H. Sample size determination for semiparametric analysis of current status data[J]. Statistical Methods in Medical Research, 2019, 28(8): 2247-2257.
[13] ZENG D, LIN D Y. Efficient estimation of semiparametric transformation models for counting processes[J]. Biometrika, 2006, 93: 627-640.
[14]LIN D Y, YING Z. Semiparametric analysis of the additive risk model[J]. Biometrika, 1994, 81: 61-71.
[15]赵慧, 崔琪, 孙建国.可加风险模型下相依Ⅰ型区间删失数据的一个Copula推断方法[J].统计与决策, 2015, 16: 8-12.
[16]肖东莹, 郑少智.半参变系数可加风险模型的变量选择与估计[J].南宁师范大学学报(自然科学版), 2020, 37(2): 16-21.
[17]罗文婷, 韦程东, 林玉婷, 等.右删失数据中不同参数设置的样本量及删失率的cc值规律研究[J].南宁师范大学学报(自然科学版), 2020, 37(2): 16-21.
[18]SU P F. Power and sample size calculation for the additive hazard model[J]. Journal of Biopharmaceutical Statistics, 2017 27: 571-583.
[19]KALBFLEISCH J D, PRENTICE R L. The statistical analysis of failure time data[M]. New York: John Wiley & Sons, 2002.
[20]WALD A. Tests of statistical hypotheses concering several parameters when the number of observations is large[J]. Transactions of the American Mathematical Society, 1943, 54: 426-482.
[21]JUNG S H, KANG S J, MCCALL L M, et al. Sample size computation for two-sample noninferiority log-rank test[J]. Journal of Biopharmaceutical Statistics, 2005, 15: 969-979.
[22]HOEL D G, WALBURG H E. Statistical analysis of survival experiments[J]. Journal of the National Cancer Institute, 1972, 49: 361-372.
[23]DUNSON D B, DINSE G E. Bayesian incidence analysis of animal tumorigenicity data[J]. Journal of the Royal Statistical Society, Series C (Applied Statistics), 2001, 50: 125-141.
[24]GHOSH D. Efficiency considerations in the additive hazards model with current status data[J]. Statistica Neerlandica, 2001, 55: 367-376.
[25]KOSOROK M R. Introduction to empirical processes and semiparametric inference[M]. New York: Springer, 2008.
[1] SUN Ye, JIANG Jingjing, WANG Chunjie. Bayesian Estimation of Current Status Data with Generalized Extreme Value Regression Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 82-90.
[2] ZHU Enwen, ZHU Anqi, WANG Jiedan, LIU Yujiao. Research on Wind Power Short-term Prediction Based on EEMD-GA-BP Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 166-174.
[3] ZHANG Shunsheng, LUO Yuling, QIU Senhui. Stochastic Attack Method Based on Mahalanobis Distance against AES Cryptosystem [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 33-43.
[4] XIE Donglin, DENG Guohe. Pricing Forward-start Power Options with Product of Two Assets in a Stochastic Interest Rate and Jump Diffusion Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 158-172.
[5] WEN Xiaomei, DENG Guohe. Valuation on Compound Power Options under Double StochasticVolatility Jump Diffusion Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 101-111.
[6] WANG Guoping, ZHU Longji. Interleaved Parallel Symmetric Boost Converter [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 11-20.
[7] TIAN Sheng, LÜ Qing. Research on Charging Strategy of Electric Vehicle Based on Battery Dynamic Aging Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 11-18.
[8] ZHANG Mingyu,ZHAO Meng,CAI Fuhong,LIANG Yu,WANG Xinhong. Wave Power Prediction Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 25-32.
[9] CHEN Xiong, ZHU Yu, FENG Ke, YU Tongwei. Identity Authentication of Power System Safetyand Stability Control Terminals Based on Blockchain [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 8-18.
[10] LI Feiyu, WENG Xiaoxiong, YAO Shushen. Research on the Scaling Law Based on the Travel Time Interval of Passengers’ Group [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 1-9.
[11] XIONG Chenxu, WEI Miaoyun, TANG Shengda. Optimal Event-driven Transmission Power Rate for Communication Satellite [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 94-102.
[12] WANG Jianwei,ZOU Yanli,WANG Ruirui,ZHOU Jian. Study on Network Structure and Grid Connection of Distributed Power Stations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 21-32.
[13] LI Jiankang,WEI Duqu,LUO Xiaoshu,QIN Yinghua. Study on Chaotic Synchronization Control of Distributed Generation System and Inductive Load Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 33-41.
[14] ZHANG Lisheng, ZHANG Zhiyong, MA Kaihua, LI Guofang. Studying Oscillations in Convection Cahn-Hilliard System with Improved Lattice Boltzmann Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 15-26.
[15] CHEN Siyu, ZOU Yanli, ZHOU Jian, TAN Huazhen. Study on the Power Allocation of Power Generators and Unbalanced Development of Loadson Power Grids [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 52-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Guolun, SONG Shuxiang, CEN Mingcan, LI Guiqin, XIE Lina. Design of Bandwidth Tunable Band-Stop Filter[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 1 -8 .
[2] LIU Ming, ZHANG Shuangquan, HE Yude. Classification Study of Differential Telecom Users Based on SOM Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 17 -24 .
[3] HU Yucong, CHEN Xu, LUO Jialing. Network Design Model of Customized Bus in Diversified Operationof Multi-origin-destination and Multi-type Vehicle Mixed Load[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 1 -11 .
[4] TANG Tang, WEI Chengyun, LUO Xiaoshu, QIU Senhui. Study of Seeker Optimization Algorithm with Inertia TermSelf-tuning to Attitude Stability of Quadrotor UAV[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 12 -19 .
[5] LIN Yue, LIU Tingzhang, HUANG Lirong, XI Xiaoye, PAN Jian. Anomalous State Detection of Power Transformer Basedon Bidirectional KL Distance Clustering Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 20 -26 .
[6] WEI Zhenhan, SONG Shuxiang, XIA Haiying. State-of-charge Estimation Using Random Forest for Lithium Ion Battery[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 27 -33 .
[7] XU Yuanjing, HU Weiping. Identification of Pathological Voice of Different Levels Based on Random Forest[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 34 -41 .
[8] ZHANG Canlong, SU Jiancai, LI Zhixin, WANG Zhiwen. Infrared-Visible Target Tracking Basedon AdaBoost Confidence Map[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 42 -50 .
[9] LIU Dianting, WU Lina. Domain Experts Recommendation in Social Network Basedon the LDA Theme Model of Trust[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 51 -58 .
[10] JIANG Yingxing, HUANG Wennian. Ground State Solutions for the NonlinearSchrödinger-Maxwell Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 59 -66 .