Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (6): 33-43.doi: 10.16088/j.issn.1001-6600.2020081602

Previous Articles     Next Articles

Stochastic Attack Method Based on Mahalanobis Distance against AES Cryptosystem

ZHANG Shunsheng, LUO Yuling*, QIU Senhui   

  1. School of Electronic Engineering, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2020-08-16 Revised:2020-11-25 Online:2021-11-25 Published:2021-12-08

Abstract: Stochastic Model (SM) is a typical profiling attack where in building template, the covariance matrix may become singular and cause exponentiation calculation, which is identical to traditional Template Attacks (TA). In addition, the reference device is fully controlled to set up random plaintexts and keys for many times, and captured power consumption data are used to build templates, which limits the usage of SM and traditional TA. In order to solve these problems, stochastic attack based on Mahalanobis distance is proposed in this paper. By studying the techniques of TA, the template is built on reference device where random plaintexts and fixed keys are used as the input, and Mahalanobis distance (statistical tool) is applied to SM to recover keys. The proposed algorithm is used to attack AES which is implemented on Atmel XMEGA128D4 microcontroller. Attack results indicate that the proposed attack method can verify that fixed or random keys have identical distribution of AES sensitive intermediate values when template is built, which can be used to restore the correct keys. Compared with CPA and traditional TA, the correct key can be recovered by the proposed attack algorithm with less power traces, and 100% of success rate can be reached with about 50 traces. The analyzing efficiency of hardware cryptosystem can be improved.

Key words: side channel attack, template attack, stochastic model, Mahalanobis distance, correlation power analysis

CLC Number: 

  • TN918.1
[1] LUO Y L,ZHOU R L,LIU J X,et al. A parallel image encryption algorithm based on the piecewise linear chaotic map and hyper-chaotic map[J]. Nonlinear Dynamics,2018,93:1165-1181. DOI:10.1007/s11071-018-4251-9.
[2] LUO Y L,TANG S B,QIN X S,et al. A double-image encryption scheme based on amplitude-phase encoding and discrete complex random transformation[J]. IEEE Access,2018,6:77740-77753. DOI:10.1109/access.2018.2884013.
[3] LUO Y L,LIN J,LIU J X,et al. A robust image encryption algorithm based on Chua’s circuit and compressive sensing[J]. Signal Processing,2019,161:227-247. DOI:10.1016/j.sigpro.2019.03.022.
[4] 杨静. 一种AES算法加密传输系统的设计与实现[J]. 电子设计工程,2019,27 (3):123-126, 131.
[5] LI C Q,LIN D D,LÜ J H,et al. Cryptanalyzing an image encryption algorithm based on autoblocking and electrocardiography[J]. IEEE Multimedia,2018,25(4):46-56. DOI:10.1109/MMUL.2018.2873472.
[6] KOCHER P,JAFFE J,JUN B. Differential power analysis[C]//19th Annual International Cryptology Conference Santa Barbara. Berlin:Springer,1999. DOI:10.1007/3-540-48405-1_25.
[7] GANDOLFI K,MOURTEL C,OLIVIER F. Electromagnetic analysis:concrete results[C]//Cryptographic Hardware and Embedded Systems-CHES 2001. Berlin:Springer,2001:251-261. DOI:10.1007/3-540-44709-1_21.
[8] KOCHER P C. Timing attacks on implement at ions of Diffie-Hellman,RSA,DSS,and other systems[C]//16th Annual International Cryptology Conference. Berlin:Springer,2001. DOI:10.1007/3-540-68697-5_9.
[9] ZHANG H L. On the exact relationship between the success rate of template attack and different parameters[J]. IEEE Transactions on Information Forensics and Security,2019,15:681-694. DOI:10.1109/tifs.2019.2928506.
[10] BRIER E,CLAVIER C,OLIVIER F. Correlation power analysis with a leakage model[C]//Cryptographic Hardware and Embedded Systems-CHES 2004. Berlin:Springer,2004:16-29. DOI:10.1007/978-3-540-28632-5_2.
[11] CHARI S,RAO J R,ROHATGI P. Template attacks[C]//Cryptographic Hardware and Embedded Systems-CHES 2002. Berlin:Springer,2002:13-28. DOI:10.1007/3-540-36400-5_3.
[12] HEUSER A,KASPER M,SCHINDLER W,et al. A new difference method for side-channel analysis with high-dimensional leakage models[C]//CT-RSA 2012 Conference. Berlin:Springer,2012:365-382. DOI:10.1007/978-3-642-27954-6_23.
[13] SCHINDLER W,LEMKE K,PAAR C. A stochastic model for fifferential dide channel cryptanalysis[C]//Cryptographic Hardware and Embedded Systems-CHES 2005. Berlin:Springer,2005:30-46. DOI:10.1007/11545262_3.
[14] 杜之波,孙元华,王燚. 针对 AES 密码算法的多点联合能量分析攻击[J]. 通信学报,2016,37(增刊1):78-84. DOI:10.11959/j.issn.1000-436x.2016251.
[15] 朱文锋,王琴,郭筝,等. 针对分组密码的攻击方法研究[J]. 计算机工程,2020,46(1):102-107,113.
[16] 郭东昕,陈开颜,张阳,等. 针对密码芯片的模板攻击研究综述[J]. 飞航导弹,2018 (12):79-83. DOI:10.16338/j.issn.1009-1319.20180040.
[17] ZHANG H L,ZHOU Y B. How many interesting points should be used in a template attack?[J]. Journal of Systems and Software,2016,120:105-113. DOI:10.1016/j.jss.2016.07.028.
[18] RECHBERGER C,OSWALD E. Practical template attacks[C]//WISA 2004. Berlin:Springer,2004:440-456. DOI:10.1007/978-3-540-31815-6_35.
[19] GIERLICHS B,LEMKE-RUST K,PAAR C. Templates vs. stochastic methods a performance analysis for side channel cryptanalysis[C]//Cryptographic Hardware and Embedded Systems-CHES 2006. Berlin:Springer,2006:15-29. DOI:10.1007/11894063_2.
[20] PAMMU A A,CHONG K S,WANG Y,et al. A highly efficient side channel attack with profiling through relevance-learning on physical leakage information[J]. IEEE Transactions on Dependable and Secure Computing,2019,16(3):376-387. DOI:10.1109/TDSC.2018.2864727.
[21] CHOUDARY M O,KUHN M G. Efficient,portable template attacks[J]. IEEE Transactions on Information Forensics and Security,2017,13(2):490-501. DOI:10.1109/TIFS.2017.2757440.
[22] ZHANG H L,ZHOU Y B,FENG D G. Mahalanobis distance similarity measure based distinguisher for template attack[J]. Security and Communication Networks,2015,8(5):769-777. DOI:10.1002/sec.1033.
[23] 李佩之,严迎建,段二朋. DES密码芯片模板攻击技术研究[J]. 计算机应用与软件,2013,30(4):310-312,333. DOI:10.3969/j.issn.1000-386x.2013.04.089.
[24] 段二朋,严迎建,刘凯. 针对AES密码芯片的CPA攻击点选择研究[J]. 计算机工程与应用,2013,49(4):91-94. DOI:10.3778/j.issn.1002-8331.1107-0348.
[25] LUO Y L,ZHANG D Z,LIU J X,et al. Cryptanalysis of chaos-based cryptosystem from the hardware perspective[J]. International Journal of Bifurcation and Chaos,2018,28(9):1850114. DOI:10.1142/S0218127418501146.
[26] STANDAERT F X,MALKIN T G,YUNG M. A unified framework for the analysis of side-channel key recovery attacks[C]//Advances in Cryptology-EUROCRYPT 2009. Berlin:Springer,2009:443-461. DOI:10.1007/978-3-642-01001-9_26.
[27] RIVAIN M. On the exact success rate of side channel analysis in the Gaussian model[C]//SAC 2008. Berlin:Springer,2008:165-183. DOI:10.1007/978-3-642-04159-4_11.
[28] FEI Y,LUO Q S,DING A A. A statistical model for DPA with novel algorithmic confusion analysis[C]//Cryptographic Hardware and Embedded Systems-CHES 2012. Berlin:Springer,2012:233-250. DOI:10.1007/978-3-642-33027-8_14.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[2] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9 -20 .
[3] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[4] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34 -46 .
[5] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[6] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[7] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[8] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .
[9] ZHAO Hongtao, LIU Zhiwei. Decompositions of λ-fold Complete Bipartite 3-uniform Hypergraphs λK(3)n,n into Hypergraph Triangular Bipyramid[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 93 -98 .
[10] LI Meng, CAO Qingxian, HU Baoqing. Spatial-temporal Analysis of Continental Coastline Migration from 1960 to 2018 in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 99 -108 .