Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (1): 175-186.doi: 10.16088/j.issn.1001-6600.2021060911
Previous Articles Next Articles
YAN Haibo1, DENG Gang2, JIANG Yunlu2*
CLC Number:
[1] 耿修林. 多元质量特性预报: MULTIVARIATE回归分析的应用[J]. 数理统计与管理, 2008, 27(5): 807-814. DOI: 10.13860/j.cnki.sltj.2008.05.002. [2]邓永亮. 网络营销规模影响因素的多重回归与实证分析[J]. 商业时代, 2013(6): 39-40. [3]耿修林, 黄婷婷. 基于多重多元回归的多目标影响因素效应比较及应用: 以企业经营活动分析为例[J]. 统计与信息论坛, 2019, 34(10): 100-107. DOI: 10.3969/j.issn.1007-3116.2019.10.013. [4]向润, 陈素芬, 曾雪强. 基于多重多元回归的人脸年龄估计[J]. 山东大学学报(工学版), 2019, 49(2): 54-60. [5]廖文辉, 林睿, 何志锋, 等. 基于稳健回归的颗粒物浓度预测研究[J]. 湖南理工学院学报(自然科学版), 2021, 34(2): 20-23, 91. DOI: 10.16740/j.cnki.cn43-1421/n.2021.02.005. [6]HUBER P J. Robust regression: asymptotics, conjectures and Monte Carlo[J]. The Annals of Statistics, 1973, 1(5): 799-821. DOI: 10.1214/aos/1176342503. [7]JUREČKOVÁ J. Nonparametric estimate of regression coefficients[J]. The Annals of Mathematical Statistics, 1971, 42(4): 1328-1338. DOI: 10.1214/aoms/1177693245. [8]KOENKER R, PORTNOY S. L-estimation for linear models[J]. Journal of the American Statistical Association, 1987, 82(399): 851-857. DOI: 10.1080/01621459.1987.10478508. [9]KRASKER W S, WELSCH R E. Efficient bounded-influence regression estimation[J]. Journal of the American Statistical Association, 1982, 77(379): 595-604. DOI: 10.1080/01621459.1982.10477855. [10]MARONNA R A, YOHAI V J. Asymptotic behavior of general M-estimates for regression and scale with random carriers[J]. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 1981, 58(1): 7-20. DOI: 10.1007/BF00536192. [11]ANDREWS D F, BICKEL P J, HAMPEL F R, et al. Robust estimates of location: survey and advances[M]. Princeton, NJ: Princeton University Press, 2016. [12]HAMPEL F R. Beyond location parameters: robust concepts and methods[J]. Bulletin of the International Statistical Institute, 1975, 46(1): 375-382. [13]ROUSSEEUW P J. Least median of squares regression[J]. Journal of the American Statistical Association, 1984, 79(388): 871-880. DOI: 10.1080/01621459.1984.10477105. [14]PIEPEL G F. Robust regression and outlier detection[J]. Technometrics, 1989, 31(2): 260-261. DOI: 10.1080/00401706. 1989.10488524. [15]AGULLÓ J, CROUX C, VAN AELST S. The multivariate least-trimmed squares estimator[J]. Journal of Multivariate Analysis, 2008, 99(3):311-338. DOI: 10.1016/j.jmva.2006.06.005. [16]SHE Y Y, OWEN A B. Outlier detection using nonconvex penalized regression[J]. Journal of the American Statistical Association, 2011, 106(494): 626-639. DOI: 10.1198/jasa.2011.tm10390. [17]KONG D H, BONDELL H D, WU Y C. Fully efficient robust estimation, outlier detection and variable selection via penalized regression[J]. Statistica Sinica, 2018, 28(2): 1031-1052. DOI: 10.5705/ss.202016.0441. [18]GAO X L, FENG Y. Penalized weighted least absolute deviation regression[J]. Statistics and Its Interface, 2018, 11(1): 79-89. DOI: 10.4310/SII.2018.v11.n1.a7. [19]JIANG Y L, WANG Y, ZHANG J T, et al. Outlier detection and robust variable selection via the penalized weighted LAD-LASSO method[J]. Journal of Applied Statistics, 2021, 48(2): 234-246. DOI: 10.1080/02664763.2020.1722079. [20]KOENKER R, PORTNOY S.M estimation of multivariate regressions[J]. Journal of the American Statistical Association, 1990, 85(412): 1060-1068. DOI: 10.1080/01621459.1990.10474976. [21]BILODEAU M, DUCHESNE P. Robust estimation of the SUR model[J]. The Canadian Journal of Statistics, 2000, 28(2): 277-288. DOI: 10.2307/3315978. [22]DAVIES P L. Asymptotic behaviour of S-estimates of multivariate location parameters and dispersion matrices[J]. The Annals of Statistics, 1987, 15(3): 1269-1292. DOI: 10.1214/aos/1176350505. [23]ROELANT E, VAN AELST S, CROUX C. Multivariate generalized S-estimators[J]. Journal of Multivariate Analysis, 2009, 100(5): 876-887. DOI: 10.1016/j.jmva.2008.09.002. [24]CROUX C, ROUSSEEUW P J, HÖSSJER O. Generalized S-estimators[J]. Journal of the American Statistical Association, 1994, 89(428): 1271-1281. DOI: 10.1080/01621459.1994.10476867. [25]BEN M G, MARTÍNEZ E, YOHAI V J. Robust estimation for the multivariate linear model based on a τ-scale[J]. Journal of Multivariate Analysis, 2006, 97(7): 1600-1622. DOI: 10.1016/j.jmva.2005.08.007. [26]GAO C. Robust regression via mutivariate regression depth[EB/OL]. (2017-02-15)[2021-06-09]. https://arxiv.org/abs/ 1702.04656. [27]ROUSSEEUW P J, VAN DRIESSEN K. A fast algorithm for the minimum covariance determinant estimator[J]. Technometrics, 1999, 41(3): 212-223. DOI: 10.1080/00401706.1999.10485670. [28]ROUSSEEUW P J, VAN AELST S, VAN DRIESSEN K, et al. Robust multivariate regression[J]. Technometrics, 2004, 46(3): 293-305. DOI: 10.1198/004017004000000329. [29]BOUDT K, ROUSSEEUW P J, VANDUFFEL S, et al. The minimum regularized covariance determinant estimator[J]. Statistics and Computing, 2020, 30(1): 113-128. DOI: 10.1007/s11222-019-09869-x. [30]姜云卢, 胡月, 刘巧云, 等. 高维稳健主成分聚类方法及其应用研究[J/OL]. 数理统计与管理, 2020[2021-06-09]. https://doi.org/10.13860/j.cnki.sltj.20201016-002. [31]LEDOIT O, WOLF M. A well-conditioned estimator for large-dimensional covariance matrices[J]. Journal of Multivariate Analysis, 2004, 88(2): 365-411. DOI: 10.1016/S0047-259X(03)00096-4. [32]HARDIN J, ROCKE D M. Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator[J]. Computational Statistics & Data Analysis, 2004, 44(4): 625-638. DOI: 10.1016/S0167-9473(02)00280-3. [33]YEH I C. Modeling slump flow of concrete using second-order regressions and artificial neural networks[J]. Cement and Concrete Composites, 2007, 29(6): 474-480. DOI: 10.1016/j.cemconcomp.2007.02.001. [34]ROUSSEEUW P J, VAN ZOMEREN B C. Unmasking multivariate outliers and leverage points[J]. Journal of the American Statistical Association, 1990, 85(411): 633-639. DOI: 10.1080/01621459.1990.10474920. |
[1] | ZHANG Zhifei, DUAN Qian, LIU Naijia, HUANG Lei. High-dimensional Nonlinear Regression Model Based on JMI [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 43-56. |
[2] | CHEN Zhongxiu, ZHANG Xingfa, XIONG Qiang, SONG Zefang. Estimation and Test for Asymmetric DAR Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 68-81. |
[3] | LIU Yu, ZHOU Wen, LI Ni. Semiparametric Rate Models for Recurrent Event Data with Cure Rate via Empirical Likelihood [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 139-149. |
[4] | ZHU Enwen, ZHU Anqi, WANG Jiedan, LIU Yujiao. Research on Wind Power Short-term Prediction Based on EEMD-GA-BP Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 166-174. |
[5] | LIANG Xin, CHEN Xiaoling, ZHANG Xingfa, LI Yuan. A Class of Autoregressive Moving Average Model with GARCH Type Errors [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 195-205. |
[6] | TIAN Zhentao, ZHANG Junjian. Quantile Feature Screening for Ultra High Dimensional Censored Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 99-111. |
[7] | XIE Donglin, DENG Guohe. Pricing Forward-start Power Options with Product of Two Assets in a Stochastic Interest Rate and Jump Diffusion Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 158-172. |
[8] | LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68-78. |
[9] | LIN Song, YIN Changming. Asymptotic Properties of Estimation of Penalized Generalized Estimating Equations for Two Stage Logit Models [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 126-130. |
[10] | HE Lin, YANG Shanchao. Asymptotic Variance Edge Frequency Polygons Estimator for α-Mixing Random Fields [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 88-94. |
[11] | LEI Qingzhu,QIN Yongsong,LUO Min. Empirical Bayes Estimation and Test for Scale ExponentialFamilies under Strong Mixing Samples [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 63-74. |
[12] | ZHANG Junjian, LAI Tingyu, YANG Xiaowei. Bayesian Empirical Likelihood Estimation on VaR and ES [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 38-45. |
[13] | ZHANG Xin-cheng, ZHANG Jun-jian, ZHAN Huan. A Goodness-of-fit Test Based on Empirical Euclidean Likelihood and Vertical Density Representation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 60-65. |
[14] | DU Xue-song, BIN Shi-yu, LIN Yong, TANG Zhang-sheng, ZHANG Yong-de, ZENG Lan, YANG Hui-zan, CHEN Zhong. Cold Tolerance Determination Model of Tilapia Based on ULCIZ and SIT [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 134-139. |
[15] | ZHANG Jun-jian, ZHAN Huan, YAN Zhen. A Goodness of Fit Test Based on Empirical Euclidean Likelihood [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 30-35. |
|