Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (6): 99-111.doi: 10.16088/j.issn.1001-6600.2020122406
Previous Articles Next Articles
TIAN Zhentao, ZHANG Junjian*
CLC Number:
[1] 唐振军, 杨帆, 黄紫晴, 等. 基于PCA特征距离的图像哈希算法[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 9-18. [2] TIBSHIRANI R. Regression shrinkage and selection via the LASSO[J]. Journal of the Royal Statistical Society: Series B(Methodological), 1996, 58(1): 267-288. [3] FAN J Q, LI R Z. Variable selection via nonconcave penalized likelihood and its oracle properties[J]. Journal of the American Statistical Association, 2001, 96(456): 1348-1360. [4] 杨善朝. 线性模型中岭估计的相合性[J]. 广西师范大学学报(自然科学版), 1992, 10(1): 25-29. [5] 杨晓伟, 张军舰. 负二项回归模型的重对数律和强相合性[J]. 广西师范大学学报(自然科学版), 2020, 38(3): 59-69. [6] FAN J Q, LV J C. Sure independence screening for ultrahigh dimensional feature space[J]. Journal of The Royal Statistical Society Series B-Statistical Methodology, 2008, 70(5): 849-911. [7] FAN J Q, SONG R. Sure independence screening in generalized linear models with np-dimensionality[J]. Annals of Statistics, 2010, 38(6): 3567-3604. [8] ZHU L P, LI L X, LI R Z, et al. Model-free feature screening for ultrahigh dimensional data[J]. Journal of the American Statistical Association, 2011, 106(496): 1464-1475. [9] LI R Z, ZHONG W, ZHU L P. Feature screening via distance correlation learning[J]. Journal of the American Statistical Association, 2012, 107: 1129-1139. [10] LIU Y, CHEN X L. Quantile screening for ultra-high-dimensional heterogeneous data conditional on some variables[J]. Journal of Statistical Computation and Simulation, 2018, 88(2): 329-342. [11] 赖秋楠, 李玉杰, 李高荣. 超高维部分线性模型的PGFR变量筛选[J]. 应用概率统计, 2017, 33(6): 608-624. [12] 何胜美, 李高荣, 许王莉. 基于秩能量距离的超高维特征筛选研究[J]. 统计研究, 2020, 37(8): 117-128. [13] LIU Y, CHEN X L. A new robust model-free feature screening method for ultra-high dimensional right censored data[J]. Communications in Statistics-Theory and Methods, 2020: 1-19. [14] 高羽飞, 来鹏, 何孟霜, 等. 基于模型平均的超高维数据特征筛选方法[J]. 扬州大学学报(自然科学版), 2020, 23 (3): 7-14. [15] ZHAO S D, LI Y. Principled sure independence screening for cox models with ultra-high-dimensionalcovariates[J]. Journal of Multivariate Analysis, 2012, 105(1): 397-411. [16] ZHOU T Y, ZHU L P. Model-free feature screening for ultrahigh dimensional censored regression[J]. Statistics and Computing, 2017, 27(4): 947-961. [17] CHEN X L. Model-free conditional feature screening for ultra-high dimensional right censored data[J]. Journal of Statistical Computation and Simulation, 2019, 88(12): 242-546. [18] HE X M, WANG L, HONG H G. Quantile-adaptive model-free variable screening for high-dimensional heterogeneous data[J]. Annals of Statistics, 2013, 41: 342-369. [19] WU Y S, YIN G S. Conditional quantile screening in ultrahigh-dimensional heterogeneous data[J]. Biometrika, 2015, 102(1): 65-76. [20] NEDELJKOVIE M. Nonparametric test of conditional quantile independence with an application to banks, system risk[EB/OL]. (2010-03-07)[2020-12-24]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.597.4858&rep=rep1& type=pdf. [21] SERFLING R J. Approximation theorems of mathematical statistics[M]. New York: John Wiley & Sons, Inc., 1980. [22] LIU J Y, LI R Z, WU R L. Feature selection for varying coefficient models with ultrahigh-dimensional covariates[J]. Journal of the American Statistical Association, 2014, 109(505): 266-274. |
[1] | XIE Donglin, DENG Guohe. Pricing Forward-start Power Options with Product of Two Assets in a Stochastic Interest Rate and Jump Diffusion Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 158-172. |
[2] | LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68-78. |
[3] | LIN Song, YIN Changming. Asymptotic Properties of Estimation of Penalized Generalized Estimating Equations for Two Stage Logit Models [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 126-130. |
[4] | HE Lin, YANG Shanchao. Asymptotic Variance Edge Frequency Polygons Estimator for α-Mixing Random Fields [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 88-94. |
[5] | LEI Qingzhu,QIN Yongsong,LUO Min. Empirical Bayes Estimation and Test for Scale ExponentialFamilies under Strong Mixing Samples [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 63-74. |
[6] | ZHANG Junjian, LAI Tingyu, YANG Xiaowei. Bayesian Empirical Likelihood Estimation on VaR and ES [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 38-45. |
[7] | ZHANG Xin-cheng, ZHANG Jun-jian, ZHAN Huan. A Goodness-of-fit Test Based on Empirical Euclidean Likelihood and Vertical Density Representation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 60-65. |
[8] | DU Xue-song, BIN Shi-yu, LIN Yong, TANG Zhang-sheng, ZHANG Yong-de, ZENG Lan, YANG Hui-zan, CHEN Zhong. Cold Tolerance Determination Model of Tilapia Based on ULCIZ and SIT [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 134-139. |
[9] | ZHANG Jun-jian, ZHAN Huan, YAN Zhen. A Goodness of Fit Test Based on Empirical Euclidean Likelihood [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 30-35. |
[10] | ZHANG Jun-jian, YANG Xiu-qin. Minimum Weighted KS Estimate [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 54-58. |
|