Journal of Guangxi Normal University(Natural Science Edition) ›› 2017, Vol. 35 ›› Issue (3): 63-74.doi: 10.16088/j.issn.1001-6600.2017.03.008
Previous Articles Next Articles
LEI Qingzhu1,QIN Yongsong1*,LUO Min2
CLC Number:
[1] ROBBINS H. An empirical Bayes approach to statistics[C]//Proc Third Berkeley Syrup on Math Statist Prob,Berkeley:Univ California Press,1956:157-163. [2] Jr JOHNS M V. Non-parametric empirical Bayes procedures[J]. Ann Math Statist,1957,28(3):649-669.DOI:10.1214/aoms/1177706877. [3] Jr JOHNS M V,Van RYZIN J. Convergence rates for empirical Bayes two-action problems I:discrete case[J]. Ann Math Statist,1971,42(5):1521-1539.DOI:10.1214/aoms/1177693151. [4] Jr JOHNS M V,Van RYZIN J. Convergence rates for empirical Bayes two-action problems II:continuous case[J]. Ann Math Statist,1972,43(3):934-947.DOI:10.1214/aoms/1177692557. [5] LIN P E. Rates of convergence in empirical Bayes estimation problems:continuous case[J]. Ann Statist,1975,3(1):155-164.DOI:10.1214/aos/1176343005. [6] SINGH R S. Empirical Bayes estimation in Lebesgue-exponential families with rates near the best possible rate[J]. Ann Statist,1979,7(4):890-902.DOI:10.1214/aos/1176344738. [7] SINGH R S, WEI Laisheng. Empirical Bayes with rates and best rates of convergence in u(x)c(θ)e-x/θ-family:estimation case[J]. Ann Inst Statist Math,1992,44(3):435-449.DOI:10.1007/BF00050697. [8] 韦来生. 刻度指数族参数的经验Bayes检验问题:NA 样本情形[J]. 应用数学学报,2000,23(3):403-412. [9] 郭鹏江,王惠亚,张涛. PA 样本下刻度指数族参数的EB检验[J]. 西北大学学报(自然科学版),2009,39(1):1-5. [10] 陈玲,韦来生. 连续型单参数指数族参数的经验Bayes 估计问题:NA 样本情形[J]. 数学研究,2006,39(1):44-50. [11] LEI Qingzhu, QIN Yongsong. Empirical Bayes test problem in continuous one-parameter exponential families under dependent samples[J]. Sankhya A:The Indian Journal of Statistics,2015,77(2):364-379.DOI:10.1007/s13171-015-0075-6. [12] 雷庆祝,秦永松. 强混合样本下连续型单参数指数分布族的经验贝叶斯估计[J]. 应用数学,2016,29(1):143-151.DOI:10.13642/j.cnki.42-1184/o1.2015.01.018. [13] ROSENBLATT M. A central limit theorem and a strong mixing condition[J]. Proc Natl Acad Sci, 1956,42(1):43-47. [14] DOUKHAN P. Mixing:properties and examples[M]. New York:Springer-Verlag,1994. [15] CHANDA K C. Strong mixing properties of linear stochastic processes[J]. J Appl Probab,1974,11(2):401-408.DOI:10.2307/3212764. [16] GORODETSKII V V. On the strong mixing properties for linear sequences[J]. Theory Probab Appl,1978,22(2):411-413.DOI:10.1137/1122049. [17] WITHERS C S. Conditions for linear processes to be strong-mixing[J]. Z Wahrsch Verw Grebiete,1981,57(4):477-480.DOI:10.1007/BF01025869. [18] PHAM T D, TRAN L T. Some mixing properties of time series models[J]. Stochastic Process Appl,1985,19(2):297-303.DOI:10.1016/0304-4149(85)90031-6. [19] GENON-CATALOT V, JEANTHEAU T, LAREDO C. Stochastic volatility models as hidden Markov models and statistical applications[J]. Bernoulli,2000,6(6):1051-1079.DOI:10.2307/3318471. [20] RAO B L S P. Nonparametric functional estimation[M]. Orlando, FL:Academic Press,1983. [21] BRADLEY R C. Basic properties of strong mixing conditions. a survey and some open questions[J]. Probability Surveys,2005,2:107-144.DOI:10.1214/154957805100000104. [22] ROBERTS G O, ROSENTHAL J S. Harris recurrence of metropolis-within-gibbs and trans-dimensional Markov chains[J]. The Annals of Applied Probability,2006,16(4):2123-2139.DOI:10.1214/105051606000000510. [23] DEO C M. A note on empirical processes of strong-mixing sequences[J]. Ann Probab,1973,1(5):870-875.DOI:10.1214/aop/1176996855. [24] 赵林城. 一类离散分布参数的经验Bayes 估计的收敛速度[J]. 数学研究与评论,1981(1):59-69. |
[1] | LIN Song, YIN Changming. Asymptotic Properties of Estimation of Penalized Generalized Estimating Equations for Two Stage Logit Models [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 126-130. |
[2] | HE Lin, YANG Shanchao. Asymptotic Variance Edge Frequency Polygons Estimator for α-Mixing Random Fields [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 88-94. |
[3] | ZHANG Junjian, LAI Tingyu, YANG Xiaowei. Bayesian Empirical Likelihood Estimation on VaR and ES [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 38-45. |
[4] | ZHANG Xin-cheng, ZHANG Jun-jian, ZHAN Huan. A Goodness-of-fit Test Based on Empirical Euclidean Likelihood and Vertical Density Representation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 60-65. |
[5] | DU Xue-song, BIN Shi-yu, LIN Yong, TANG Zhang-sheng, ZHANG Yong-de, ZENG Lan, YANG Hui-zan, CHEN Zhong. Cold Tolerance Determination Model of Tilapia Based on ULCIZ and SIT [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 134-139. |
[6] | ZHANG Jun-jian, ZHAN Huan, YAN Zhen. A Goodness of Fit Test Based on Empirical Euclidean Likelihood [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 30-35. |
[7] | ZHANG Jun-jian, YANG Xiu-qin. Minimum Weighted KS Estimate [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 54-58. |
|