Journal of Guangxi Normal University(Natural Science Edition) ›› 2017, Vol. 35 ›› Issue (3): 53-62.doi: 10.16088/j.issn.1001-6600.2017.03.007

Previous Articles     Next Articles

Simulation Study of DNA Condensation Theory

ZHANG Min1,2,GU Lingyun1,2, ZHOU Xun1*,LIU Yanhui2*   

  1. 1.School of Physics and Electronic Science,Guizhou Normal University,Guiyang Guizhou 550025,China;
    2.College of Physics,Guizhou University,Guiyang Guizhou 550025,China
  • Online:2017-07-25 Published:2018-07-25

Abstract: In order to identify the mechanism of DNA condensation further, a strong correlation model is established based on the strong correlation of condensed counterios and Monte Carlo simulation is employed to study the properties of DNA condensation. During the condensation process, gyration radii of condensed conformation appear step-wise manner indicating the discontinuousness of process of DNA condensation. Autocorrelation of the segment reflects the number of loop structure in the condensed conformation, the condensed phase diagram shows the complexity of the condensed conformation, the majority of condensed conformations take on the complex flower structure, and in comparison with flower structure, the occurrence rate of the toroidal structure is small. All the results mentioned above show strong highlight into the mechanism of DNA condensation.

Key words: condensed balanced ions, strong correlation, DNA condensation, Monte Carlo simulation, gyration radius

CLC Number: 

  • Q61
[1] GUO Z, WANG Y, YANG A, et al. The effect of pH on charge inversion and condensation of DNA[J]. Soft Matter, 2016, 12(31): 6669-6674. DOI:10.1039/C6SM01344A.
[2] JIA J L, XI B, RAN S Y. Direct evidence of divalent manganese ion-induced DNA condensation at room temperature[J]. Macromolecular Chemistry and Physics, 2016, 217(14): 1629-1635.DOI:10.1002/macp.201600123.
[3] DEROUCHEY J E, RAU D C. Salt effects on condensed protamine-DNA assemblies:anion binding and weakening of attraction[J].The Journal of Physical Chemistry B, 2011, 115(41):11888.DOI:10.1021/jp203834z.
[4] CARLSTEDTJ, LUNDBERG D, DIAS R S, et al. Condensation and decondensation of DNA by cationic surfactant, spermine, or cationic surfactant-cyclodextrin mixtures: macroscopic phase behavior, aggregate properties, and dissolution mechanisms[J]. Langmuir, 2012, 28(21): 7976-7989.DOI:10.1021/la300266h.
[5] GELBARTW M, BRUINSMA R F, PINCUS P A, et al. DNA-inspired electrostatics[J]. Physics Today, 2000, 53(9): 38-44.DOI:10.1063/1.1325230.
[6] OOSAWA F. Interaction between parallel rodlike macroions[J]. Biopolymers, 1968, 6(11): 1633-1647.DOI: 10.1002/bip.1968.360061108.
[7] MANNING G S. Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties[J]. The Journal of Chemical Physics, 1969, 51(3): 924-933.DOI:10.1063/1.1672157.
[8] LEVIN Y, ARENZON J J, STILCK J F. The nature of attraction between like-charged rods[J]. Physical Review Letters, 1999, 83(13): 2680.DOI:10.1103/PhysRevLett.83.2680.
[9] GRNBECH-JENSEN N, MASHL R J, BRUINSMA R F, et al. Counterion-induced attraction between rigid polyelectrolytes[J]. Physical Review Letters, 1997, 78(12): 2477.DOI:10.1103/PhysRevLett.78.2477.
[10] HA B Y, LIU A J. Counterion-mediated attraction between two like-charged rods[J]. Physical Review Letters, 1997, 79(7): 1289.DOI:10.1103/PhysRevLett.79.1289.
[11] MURAYAMA H, YOSHIKAWA K. Thermodynamics of the collapsing phase transition in a single duplex DNA molecule[J]. The Journal of Physical Chemistry B, 1999, 103(47): 10517-10523.DOI:10.1021/jp990721o.
[12] SAITO T, IWAKI T, YOSHIKAWA K. Why is the compact state of DNA preferred at higher temperature? Folding transition of a single DNA chain in the presence of a multivalent cation[J]. Europhysics Letters, 2005, 71(2): 304.DOI: 10.1209/epl/i2004-10541-6.
[13] KIM W K, NETZ R R. Barrier-induced dielectric counterion relaxation at super-low frequencies in salt-free polyelectrolyte solutions[J]. The European Physical Journal E, 2015, 38(11): 1-15.DOI: 10.1140/epje/i2015-15120-6.
[14] CHREMOS A, DOUGLAS J F. Counter-ion distribution around flexible polyelectrolytes having different molecular architecture[J]. Soft Matter, 2016, 12(11):2932-2941.
[15] DINGM, LIANG Y, LU B S, et al. Charge renormalization and charge oscillation in asymmetric primitive model of electrolytes[J]. Journal of Statistical Physics, 2016, 165(5): 970-989.DOI:10.1007/s10955-016-1644-3.
[16] RITORTF, MIHARDJA S, SMITH S B, et al. Condensation transition in DNA-polyaminoamide dendrimer fibers studied using optical tweezers[J]. Physical Review Letters, 2006, 96(11):118301.DOI:10.1103/PhysRevLett.96.118301.
[17] COLBY R H, RUBINSTEIN M. Polymer physics[J]. New York: Oxford University, 2003: 274-281.
[18] OOSAWA F. Polyelectrolytes[M]. New York: Marcel Dekker, 1971.
[19] 刘艳辉, 胡林. DNA 微环拓扑性质的 Monte Carlo 模拟[J]. 计算物理, 2009, 26(1): 152-158.
[20] FU W B, WANG X L, ZHANG X H, et al. Compaction dynamics of single DNA molecules under tension[J]. Journal of the American Chemical Society, 2006, 128(47): 15040-15041. DOI:10.1021/ja064305a.
[21] MAO W, LIU Y H, HU L, et al. Effects of ionic dependence of DNA persistence length on the DNA condensation at room temperature[J]. Communications in Theoretical Physics, 2016, 65(5): 639. DOI: 10.1088/0253-6102/65/5/639.
[22] MAO W, GAO Q, LIU Y, et al. Temperature dependence of DNA condensation at high ionic concentration[J]. Modern Physics Letters B, 2016, 30(21):1650298. DOI:10.1142/S0217984916502985.
[23] VILFANI D, CONWELL C C, SARKAR T, et al. Time study of DNA condensate morphology: implications regarding the nucleation, growth, and equilibrium populations of toroids and rods[J]. Biochemistry, 2006, 45(26): 8174-8183. DOI:10.1021/bi060396c.
[24] LAPPALA A, TERENTJEV E M.Maximum compaction density of folded semiflexible polymers[J]. Macromolecules, 2013, 46(17):7125-7131. DOI:10.1021/ma4009127.
[1] WANG Junfeng, LI Ping. Shortest-path Exponent and Backbone Exponentof Explosive Percolation Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 81-86.
[2] LIAO Guangrui, YANG Yongxu. The Monte Carlo Simulation of J/ψ→γηc→γϕϕat BES III [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(3): 1-6.
[3] LU Siyao, XU Meiping. Research on the Risk Measurement of Stock Index Basedon Mixture-Copula and ARMA-GARCH-t Models [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 93-101.
[4] XU Lei, DENG Guo-he. Valuation on European Lookback Option under Stochastic Volatility Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(3): 79-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!