Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (5): 117-129.doi: 10.16088/j.issn.1001-6600.2023102501

Previous Articles     Next Articles

Bayesian Composite Quantile Regression for a Partially Linear Variable Coefficient Model

LI Can, YANG Jianbo, LI Rong*   

  1. School of Data Science and Information Engineering, Guizhou Minzu University, Guiyang Guizhou 550025, China
  • Received:2023-10-25 Revised:2024-01-11 Online:2024-09-25 Published:2024-10-11

Abstract: The partial linear variable coefficient model consists of two parts,parameter and non-parameter,which has the advantages of wide range of adaptation and strong interpretation. To solve the parameter estimation problem of the model,the B-spline method is used to approximate the unknown smooth function of the non-parametric part,and then the compound asymmetric Laplacian distribution is used to realize the Bayesian composite quantile regression,and the posterior distribution of all the unknown parameters is derived based on the Gibbs sampling algorithm. Through numerical simulation,Bayesian compound quantile regression is compared with Bayesian quantile regression and Bayesian linear regression parameter estimation. The results show that when the error follows non-normal distribution,Bayesian compound quantile regression estimation performs better under mean square error criterion. Finally,based on the above three methods to predict the case data,the results show that in terms of mean absolute deviation and mean square error prediction,the prediction effect based on Bayesian compound quantile regression is the best.

Key words: partially linear variable coefficient model, B-spline, Bayesian composite quantile regression, mean square error, Gibbs sampling algorithm

CLC Number:  O212.1
[1] ZHANG W Y,LEE S Y,SONG X Y. Local polynomial fitting in semivarying coefficient model[J]. Journal of Multivariate Analysis,2002,82(1):166-188. DOI: 10.1006/jmva.2001.2012.
[2] FAN J,HUANG T. Profile likelihood inferences on semiparametric varying-coefficient partially linear models[J]. Bernoulli,2005,11(6):1031-1057. DOI: 10.3150/bj/1137421639.
[3] HU X M,WANG Z Z,ZHAO Z W. Empirical likelihood for semiparametric varying-coefficient partially linear errors-in-variables models[J]. Statistics & Probability Letters,2009,79(8):1044-1052. DOI: 10.1016/j.spl.2008.12.011.
[4] SUN H,LIU Q. Robust empirical likelihood inference for partially linear varying coefficient models with longitudinal data[J]. Journal of Statistical Computation and Simulation,2023,93(10):1559-1579. DOI: 10.1080/00949655.2022.2145289.
[5] KOENKER R,BASSETT G JR.Regression quantiles[J]. Econometrica: Journal of the Econometric Society,1978:33-50. DOI: 10.2307/1913643.
[6] BO K,LI R Z,ZOU H. New efficient estimation and variable selection methods for semiparametric varing-coefficient partially linear models[J]. Annals of Statistics,2011,39(1):305-332. DOI: 10.1214/10-AOS842.
[7] YANG J,LU F,YANG H. Quantile regression for robust inference on varying coefficient partially nonlinear models[J]. Journal of the Korean Statistical Society,2018,47(2):172-184. DOI: 10.1016/j.jkss.2017.12.002.
[8] 田镇滔,张军舰.基于分位数方法的超高维删失数据的特征筛选[J].广西师范大学学报(自然科学版),2021,39(6):99-111. DOI: 10.16088/j.issn.1001-6600.2020122406.
[9] WANG B H,LIANG H Y. Quantile regression of ultra-high dimensional partially linear varying-coefficient model with missing observations[J]. Acta Mathematica Sinica: English Series,2023,39(9):1701-1726. DOI: 10.1007/S10114-023-0667-3.
[10] ZOU H,YUAN M. Composite quantile regression and the oracle model selection theory[J]. The Annals of Statistics,2008,36(3):1108-1126. DOI: 10.1214/07-AOS507.
[11] ZHANG R Q,LV Y Z,ZHAO W H,et al. Composite quantile regression and variable selection in single-index coefficient model[J]. Journal of Statistical Planning and Inference,2016,176:1-21. DOI: 10.1016/j.jspi.2016.04.003.
[12] JIN J,HAO C Y,MA T F. B-spline estimation for partially linear varying coefficient composite quantile regression models[J]. Communications in Statistics-Theory and Methods,2019,48(21):5322-5335. DOI: 10.1080/03610926.2018.1510006.
[13] 刘艳霞,芮荣祥,田茂再. 部分线性变系数模型的新复合分位数回归估计[J]. 应用数学学报,2021,44(2):159-174. DOI: 10.12387/C2021012.
[14] ZOU Y,FAN G,ZHANG R. Composite quantile regression for heteroscedastic partially linear varying-coefficient models with missing censoring indicators[J]. Journal of Statistical Computation and Simulation,2023,93(3):341-365. DOI: 10.1080/00949655.2022.2108030.
[15] HUANG H W,CHEN Z X. Bayesian composite quantile regression[J]. Journal of Statistical Computation and Simulation,2015,85(18):3744-3754. DOI: 10.1080/00949655.2015.1014372.
[16] TIAN Y Z,LIAN H,TIAN M Z. Bayesian composite quantile regression for linear mixed-effects models[J]. Communications in Statistics-Theory and Methods,2017,46(15):7717-7731. DOI: 10.1080/03610926.2016.1161798.
[17] ALHUSSEINIl F H H,GEORGESCU V. Bayesian composite Tobit quantile regression[J]. Journal of Applied Statistics,2018,45(4):727-739. DOI: 10.1080/02664763.2017.1299697.
[18] TIAN Y Z, WANG L Y, WU X Q. et al. Gibbs sampler algorithm of Bayesian weighted composite quantile regression[J]. Chinese Journal of Applied Probability and Statistics, 2019, 35(2): 178-192. DOI: 10.3969/j.issn.1001-4268.2019.02.006.
[19] 张永霞,田茂再. 基于贝叶斯的部分线性单指标复合分位回归的研究及其应用[J]. 系统科学与数学,2021,41(5):1381-1399. DOI: 10.12341/jssms20418.
[20] YUAN X H,XIANG X F,ZHANG X R. Bayesian composite quantile regression for the single-index model[J]. Plos One,2023,18(5):e0285277. DOI: 10.1371/JOURNAL.PONE.0285277.
[21] ALHAMZAWI R. Bayesian analysis of composite quantile regression[J]. Statistics in Biosciences,2016,8(2):358-373. DOI: 10.1007/s12561-016-9158-8.
[22] KOZUMI H,KOBAYASHI G. Gibbs sampling methods for Bayesian quantile regression[J]. Journal of Statistical Computation and Simulation,2011,81(11):1565-1578. DOI: 10.1080/00949655.2010.496117.
[23] TIAN R Q,XU D K,DU J,et al. Bayesian estimation for partially linear varying coefficient spatial autoregressive models[J]. Statistics and Its Interface,2022,15(1):105-113. DOI: 10.4310/21-SII682.
[24] BARNDORFF-NIELSEN O E,SHEPHARD N. Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics[J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology),2001,63(2):167-241. DOI: 10.1111/1467-9868.00282.
[25] HE X M,FUNG W K,ZHU Z Y. Robust estimation in generalized partial linear models for clustered data[J]. Journal of the American Statistical Association,2005,100(472):1176-1184. DOI: 10.1198/016214505000000277.
[26] JIANG R,QIAN W M,ZHOU Z G. Weighted composite quantile regression for partially linear varying coefficient models[J]. Communications in Statistics: Theory and Methods,2018,47(16):3987-4005. DOI: 10.1080/03610926.2017.1366522.
[1] KANG Huigang, YU Bo. Fast Algorithm for Hilbert Transform of a Signal by Using Cubic Splines Wavelets [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 124-136.
[2] ZHAO Tingting, YANG Fenglian. B-Spline Method for the Cauchy Problem of the Laplace Equation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 118-129.
[3] SHU Ting LUO Youxi LI Hanfang. Double Penalty Quantile Regression for Panel Data Models Based on Bayesian Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 150-165.
[4] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Wenbo, DONG Qing, LIU Chao, ZHANG Qi. Fine-grained Intent Recognition from Pediatric Medical Dialogues with Contrastive Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 1 -10 .
[2] GAO Shengxiang, YANG Yuanzhang, WANG Linqin, MO Shangbin, YU Zhengtao, DONG Ling. Multi-level Disentangled Personalized Speech Synthesis for Out-of-Domain Speakers Adaptation Scenarios[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 11 -21 .
[3] ZHU Gege, HUANG Anshu, QIN Yingying. Analysis of Development Trend of International Mangrove Research Based on Web of Science[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 1 -12 .
[4] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[5] ZUO Junyuan, LI Xintong, ZENG Zihan, LIANG Chao, CAI Jinjun. Recent Advances on Metal-Organic Framework-Based Catalysts for Selective Furfural Hydrogenation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 28 -38 .
[6] TAN Quanwei, XUE Guijun, XIE Wenju. Short-Term Heating Load Prediction Model Based on VMD and RDC-Informer[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 39 -51 .
[7] LIU Changping, SONG Shuxiang, JIANG Pinqun, CEN Mingcan. Differential Passive N-path Filter Based on Switched Capacitors[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 52 -60 .
[8] WANG Dangshu, SUN Long, DONG Zhen, JIA Rulin, YANG Likang, WU Jiaju, WANG Xinxia. Parameter Optimization Design of Full-Bridge LLC Resonant Converter under Variable Load[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 61 -71 .
[9] ZHANG Jinzhong, WEI Duqu. Fixed Time Bounded Control of PMSM Chaotic Systems without Initial State Constraints[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 72 -78 .
[10] TU Zhirong, LING Haiying, LI Guo, LU Shenglian, QIAN Tingting, CHEN Ming. Lightweight Passion Fruit Detection Method Based on Improved YOLOv7-Tiny[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 79 -90 .