Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (1): 150-165.doi: 10.16088/j.issn.1001-6600.2021060917

Previous Articles     Next Articles

Double Penalty Quantile Regression for Panel Data Models Based on Bayesian Method

SHU Ting LUO Youxi LI Hanfang*   

  1. School of Science, Hubei University of Technology, Hubei Wuhan 430068, China
  • Received:2021-06-09 Revised:2021-06-22 Online:2022-01-25 Published:2022-01-24

Abstract: In the mixed-effects models of panel data, it is difficult to estimate the parameters of the model because of a large number of unknown random effects. At the same time, because the distribution of random errors is unknown, the random errors under different distributions increase the complexity of model computation and bring difficulties to the selection and estimation of variables for the coefficients of fixed and random effects. To solve this problem, this paper establishes a double Bayesian Adaptive Lasso quantile regression model, and introduces the Adaptive Lasso penalty function into the panel data with fixed and random effects at the same time. A Gibbs sampling algorithm for parameter estimation is also constructed. The Monte Carlo simulation results show that the method not only accurately estimates the parameter coefficients of different panel data models, but also allows the selection of important variables.

Key words: double adaptive Lasso penalty, Gibbs sampling algorithm, quantile regression, random effects, Bayesian method

CLC Number: 

  • O212.8
[1] TIAN R Q, XUE L G. Generalized empirical likelihood inference in generalized linear models for longitudinal data[J]. Communications in Statistics-Theory and Methods, 2014, 43(18): 3893-3904.
[2]JAYNES E T. Information theory and statistical mechanics[J]. Physical Review, 1957, 106(4): 620.
[3]JAYNES E T. Information theory and statistical mechanics. II[J]. Physical Review, 1957, 108(2): 171.
[4]TIBSHIRANI R. Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58(1): 267-288.
[5]PARK T, CASELLA G. The Bayesian Lasso[J]. Journal of the American Statistical Association, 2008, 103(482): 681-686.
[6]杨磊, 夏亚波, 毛欣瑶, 等. 基于分层贝叶斯Lasso的稀疏ISAR成像算法[J]. 电子与信息学报, 2021, 43(3): 623-631.
[7]ZOU H. The adaptive Lasso and its oracle properties[J]. Journal of the American Statistical Association, 2006, 101(476): 1418-1429.
[8]LI B H, WU J. Bayesian bootstrap adaptive Lasso estimators of regression models[J]. Journal of Statistical Computation and Simulation, 2021, 91(8): 1651-1680.
[9]李翰芳, 罗幼喜, 田茂再. 面板数据的贝叶斯Lasso分位回归方法[J]. 数量经济技术经济研究, 2013,30(2): 138-149.
[10]李子强, 田茂再, 罗幼喜. 面板数据的自适应Lasso分位回归方法研究[J]. 统计与信息论坛, 2014, 29(7): 3-10.
[11]王小燕, 姚佳含, 袁欣. 带网络结构的自适应Lasso分位数回归及其应用[J]. 系统工程理论与实践, 2019, 39(8): 1954-1965.
[12]张巧琦. 基于MM算法的纵向数据双惩罚分位模型研究[D]. 上海:上海师范大学, 2018.
[13]NEAL R M. Slice sampling[J]. The Annals of Statistics, 2003, 31(3): 705-767.
[14]ALHAMZAWI R, YU K M. Bayesian Lasso-mixed quantile regression[J]. Journal of Statistical Computation and Simulation, 2014, 84(4): 868-880.
[15]KOZUMI H, KOBAYASHI G. Gibbs sampling methods for Bayesian quantile regression[J]. Journal of Statistical Computation and Simulation, 2011, 81(11): 1565-1578.
[16]ANDREWS D F, MALLOWS C L. Scale mixtures of normal distributions[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1974, 36(1): 99-102.
[17]罗幼喜, 田茂再. 面板数据的分位回归方法及其模拟研究[J]. 统计研究, 2010,27(10): 81-87.
[1] SUN Ye, JIANG Jingjing, WANG Chunjie. Bayesian Estimation of Current Status Data with Generalized Extreme Value Regression Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 82-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Guolun, SONG Shuxiang, CEN Mingcan, LI Guiqin, XIE Lina. Design of Bandwidth Tunable Band-Stop Filter[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 1 -8 .
[2] LIU Ming, ZHANG Shuangquan, HE Yude. Classification Study of Differential Telecom Users Based on SOM Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 17 -24 .
[3] HU Yucong, CHEN Xu, LUO Jialing. Network Design Model of Customized Bus in Diversified Operationof Multi-origin-destination and Multi-type Vehicle Mixed Load[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 1 -11 .
[4] TANG Tang, WEI Chengyun, LUO Xiaoshu, QIU Senhui. Study of Seeker Optimization Algorithm with Inertia TermSelf-tuning to Attitude Stability of Quadrotor UAV[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 12 -19 .
[5] LIN Yue, LIU Tingzhang, HUANG Lirong, XI Xiaoye, PAN Jian. Anomalous State Detection of Power Transformer Basedon Bidirectional KL Distance Clustering Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 20 -26 .
[6] WEI Zhenhan, SONG Shuxiang, XIA Haiying. State-of-charge Estimation Using Random Forest for Lithium Ion Battery[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 27 -33 .
[7] XU Yuanjing, HU Weiping. Identification of Pathological Voice of Different Levels Based on Random Forest[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 34 -41 .
[8] ZHANG Canlong, SU Jiancai, LI Zhixin, WANG Zhiwen. Infrared-Visible Target Tracking Basedon AdaBoost Confidence Map[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 42 -50 .
[9] LIU Dianting, WU Lina. Domain Experts Recommendation in Social Network Basedon the LDA Theme Model of Trust[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 51 -58 .
[10] JIANG Yingxing, HUANG Wennian. Ground State Solutions for the NonlinearSchrödinger-Maxwell Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 59 -66 .