Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (5): 130-140.doi: 10.16088/j.issn.1001-6600.2023110304
Previous Articles Next Articles
WANG Jingwei, HU Chaozhu, LI Hanfang, LUO Youxi*
[1] ZOU H,YUAN M. Composite quantile regression and the oracle model selection theory[J]. The Annals of Statistics,2008,36(3):1108-1126. [2] HUANG H W,CHEN Z X,et al. Bayesian composite quantile regression[J]. Journal of Statistical Computation and Simulation,2015,85(18):3744-3754. [3] 张永霞,田茂再. 基于贝叶斯的部分线性单指标复合分位回归的研究及其应用[J]. 系统科学与数学,2021,41(5):1381-1399. [4] 朱利荣,胡超竹,罗幼喜. 面板数据模型的惩罚复合分位回归方法[J]. 统计与决策,2022,38(13):40-45. [5] 闫莉,陈夏. 缺失数据下广义线性模型的经验似然推断[J]. 统计与信息论坛,2013,28(2):14-17. [6] 李乃医,李永明,韦盛学.缺失数据下非线性分位数回归模型的光滑经验似然推断[J].统计与决策,2015(1):97-99. [7] ZHAO P X, ZHOU X S, LIN L. Empirical likelihood for composite quantile regression modeling[J]. Journal of Applied Mathematics and Computing,2015,48(1):321-333. [8] 舒婷,罗幼喜,胡超竹,等.左删失数据的双惩罚贝叶斯Tobit分位回归方法[J].统计与决策,2023,39(5):27-33. [9] LAZAR A N. Bayesian empirical likelihood[J]. Biometrika,2003,90(2):319-326. [10] FANG K,Mukerjee R. Empirical-type likelihoods allowing posterior credible sets with frequentist validity:higher-order asymptotics[J]. Biometrika,2006,93(3):723-733. [11] YANG Y,HE X. Bayesian empirical likelihood for quantile regression[J]. The Annals of Statistics,2012,40(2):1102-1131. [12] ZHANG Y Q,TANG N S. Bayesian empirical likelihood estimation of quantile structural equation models[J]. Journal of Systems Science and Complexity,2017,30(1):122-138. [13] CHAUDHURI S,MONDAL D,YIN T. Hamiltonian Monte Carlo sampling in Bayesian empirical likelihood computation[J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology),2017,79(1):293-320. [14] VEXLER A,YU J,LAZAR N. Bayesian empirical likelihood methods for quantile comparisons[J]. Journal of the Korean Statistical Society,2017,46(4):518-538. [15] ZHAO P Y,GHOSH M,RAO K N J,et al. Bayesian empirical likelihood inference with complex survey data[J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology),2020,82(1):155-174. [16] 董小刚,刘新蕊,王纯杰,等. 右删失数据下加速失效模型的贝叶斯经验似然[J]. 数理统计与管理,2020,39(5):838-844. [17] BEDOUI A,LAZAR A N. Bayesian empirical likelihood for ridge and lasso regressions[J]. Computational Statistics and Data Analysis,2020,145:106917-106917. [18] ZHANG R,WANG D H. Bayesian empirical likelihood inference for the generalized binomial AR(1) model[J]. Journal of the Korean Statistical Society,2022,51(4):977-1004. [19] LIU C S, LIANG H Y. Bayesian empirical likelihood of quantile regression with missing observations[J]. Metrika,2023,86(3):285-313. [20] CHEN J,SITTER R R,WU C. Usingempirical likelihood methods to obtain range restricted weights in regression estimators for surveys[J]. Biometrika,2002,89(1):230-237. |
[1] | ZHANG Junjian, LAI Tingyu, YANG Xiaowei. Bayesian Empirical Likelihood Estimation on VaR and ES [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 38-45. |
|