Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (5): 130-140.doi: 10.16088/j.issn.1001-6600.2023110304

Previous Articles     Next Articles

Bayesian Empirical Likelihood Inference for Composite Quantile Regression

WANG Jingwei, HU Chaozhu, LI Hanfang, LUO Youxi*   

  1. School of Science, Hubei University of Technology, Wuhan Hubei 430068, China
  • Received:2023-11-03 Revised:2023-12-10 Online:2024-09-25 Published:2024-10-11

Abstract: In this paper,the Bayesian empirical likelihood method is extended to the compound quantile regression model. Firstly,the empirical likelihood function of the compound quantile regression model is constructed, and the conditional posterior distribution of unknown parameters is derived after the prior information is given. Secondly, considering that the posterior distribution of unknown parameters is complex and has implicit equation constraints,a Metropolis-Hastings algorithm with constraints is constructed for point estimation,confidence interval estimation and parameter hypothesis testing of model parameters. The computer simulation results show that when the stochastic error of the model is a thick tail distribution,the Bayesian empirical likelihood compound quantile regression method proposed in this paper has more obvious advantages than the compound quantile regression method,the quantile regression method and the least square method in estimating deviation and variance. Especially when the data contains more anomalies,the proposed method is the most robust. Finally,the paper uses the new method to model and analyze the data of a medical expenditure influencing factor,and finds that compared with other estimation methods,the coefficient obtained by Bayes empirical likelihood compound quantile regression method changes the least before and after estimation,regardless of whether the abnormal points in the data are deleted or not. This provides useful assistance in reducing the impact of unknown outtiers in the date on the model during a real modeling process.

Key words: compound quantile regression, Bayesian empirical likelihood, Metropolis-Hastings algorithm, Bayes factor

CLC Number:  O212
[1] ZOU H,YUAN M. Composite quantile regression and the oracle model selection theory[J]. The Annals of Statistics,2008,36(3):1108-1126.
[2] HUANG H W,CHEN Z X,et al. Bayesian composite quantile regression[J]. Journal of Statistical Computation and Simulation,2015,85(18):3744-3754.
[3] 张永霞,田茂再. 基于贝叶斯的部分线性单指标复合分位回归的研究及其应用[J]. 系统科学与数学,2021,41(5):1381-1399.
[4] 朱利荣,胡超竹,罗幼喜. 面板数据模型的惩罚复合分位回归方法[J]. 统计与决策,2022,38(13):40-45.
[5] 闫莉,陈夏. 缺失数据下广义线性模型的经验似然推断[J]. 统计与信息论坛,2013,28(2):14-17.
[6] 李乃医,李永明,韦盛学.缺失数据下非线性分位数回归模型的光滑经验似然推断[J].统计与决策,2015(1):97-99.
[7] ZHAO P X, ZHOU X S, LIN L. Empirical likelihood for composite quantile regression modeling[J]. Journal of Applied Mathematics and Computing,2015,48(1):321-333.
[8] 舒婷,罗幼喜,胡超竹,等.左删失数据的双惩罚贝叶斯Tobit分位回归方法[J].统计与决策,2023,39(5):27-33.
[9] LAZAR A N. Bayesian empirical likelihood[J]. Biometrika,2003,90(2):319-326.
[10] FANG K,Mukerjee R. Empirical-type likelihoods allowing posterior credible sets with frequentist validity:higher-order asymptotics[J]. Biometrika,2006,93(3):723-733.
[11] YANG Y,HE X. Bayesian empirical likelihood for quantile regression[J]. The Annals of Statistics,2012,40(2):1102-1131.
[12] ZHANG Y Q,TANG N S. Bayesian empirical likelihood estimation of quantile structural equation models[J]. Journal of Systems Science and Complexity,2017,30(1):122-138.
[13] CHAUDHURI S,MONDAL D,YIN T. Hamiltonian Monte Carlo sampling in Bayesian empirical likelihood computation[J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology),2017,79(1):293-320.
[14] VEXLER A,YU J,LAZAR N. Bayesian empirical likelihood methods for quantile comparisons[J]. Journal of the Korean Statistical Society,2017,46(4):518-538.
[15] ZHAO P Y,GHOSH M,RAO K N J,et al. Bayesian empirical likelihood inference with complex survey data[J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology),2020,82(1):155-174.
[16] 董小刚,刘新蕊,王纯杰,等. 右删失数据下加速失效模型的贝叶斯经验似然[J]. 数理统计与管理,2020,39(5):838-844.
[17] BEDOUI A,LAZAR A N. Bayesian empirical likelihood for ridge and lasso regressions[J]. Computational Statistics and Data Analysis,2020,145:106917-106917.
[18] ZHANG R,WANG D H. Bayesian empirical likelihood inference for the generalized binomial AR(1) model[J]. Journal of the Korean Statistical Society,2022,51(4):977-1004.
[19] LIU C S, LIANG H Y. Bayesian empirical likelihood of quantile regression with missing observations[J]. Metrika,2023,86(3):285-313.
[20] CHEN J,SITTER R R,WU C. Usingempirical likelihood methods to obtain range restricted weights in regression estimators for surveys[J]. Biometrika,2002,89(1):230-237.
[1] ZHANG Junjian, LAI Tingyu, YANG Xiaowei. Bayesian Empirical Likelihood Estimation on VaR and ES [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 38-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Wenbo, DONG Qing, LIU Chao, ZHANG Qi. Fine-grained Intent Recognition from Pediatric Medical Dialogues with Contrastive Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 1 -10 .
[2] GAO Shengxiang, YANG Yuanzhang, WANG Linqin, MO Shangbin, YU Zhengtao, DONG Ling. Multi-level Disentangled Personalized Speech Synthesis for Out-of-Domain Speakers Adaptation Scenarios[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 11 -21 .
[3] ZHU Gege, HUANG Anshu, QIN Yingying. Analysis of Development Trend of International Mangrove Research Based on Web of Science[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 1 -12 .
[4] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[5] ZUO Junyuan, LI Xintong, ZENG Zihan, LIANG Chao, CAI Jinjun. Recent Advances on Metal-Organic Framework-Based Catalysts for Selective Furfural Hydrogenation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 28 -38 .
[6] TAN Quanwei, XUE Guijun, XIE Wenju. Short-Term Heating Load Prediction Model Based on VMD and RDC-Informer[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 39 -51 .
[7] LIU Changping, SONG Shuxiang, JIANG Pinqun, CEN Mingcan. Differential Passive N-path Filter Based on Switched Capacitors[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 52 -60 .
[8] WANG Dangshu, SUN Long, DONG Zhen, JIA Rulin, YANG Likang, WU Jiaju, WANG Xinxia. Parameter Optimization Design of Full-Bridge LLC Resonant Converter under Variable Load[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 61 -71 .
[9] ZHANG Jinzhong, WEI Duqu. Fixed Time Bounded Control of PMSM Chaotic Systems without Initial State Constraints[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 72 -78 .
[10] TU Zhirong, LING Haiying, LI Guo, LU Shenglian, QIAN Tingting, CHEN Ming. Lightweight Passion Fruit Detection Method Based on Improved YOLOv7-Tiny[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 79 -90 .