Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (4): 100-114.doi: 10.16088/j.issn.1001-6600.2023052501

Previous Articles     Next Articles

Adjusted Empirical Likelihood for Spatial Autoregressive Models with Spatial Autoregressive Disturbances

TANG Jie1, QIN Yongsong1,2*   

  1. 1. School of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. Guangxi Key Lab of Multi-source Information Mining & Security (Guangxi Normal University), Guilin Guangxi 541004, China
  • Received:2023-05-25 Revised:2023-07-29 Online:2024-07-25 Published:2024-09-05

Abstract: The adjustment empirical likelihood inference of spatial autoregressive models with spatial autoregressive errors is studied in this paper. Using adjusted empirical likelihood method, an adjusted empirical likelihood ratio statistic is constructed for spatial autoregressive models with spatial autoregressive errors. It is shown that the limit distribution of the adjusted empirical likelihood statistic is a chi-squared distribution. The advantages and disadvantages of the adjusted empirical likelihood method are compared with the general empirical likelihood method through simulations. Simulation results show that the adjusted empirical likelihood region has higher coverage accuracy and is faster in implementation than that of the general empirical likelihood. When the sample size is large, both general empirical likelihood method and adjusted empirical likelihood method can be used whether the error term follows a normal distribution or not. But when the sample size is small, it is recommended to use the adjusted empirical likelihood method.

Key words: spatial autoregressive error, spatial ARAR model, adjusted empirical likelihood, confidence region

CLC Number:  O212.1
[1] TOBLER W R. A computer movie simulating urban growth in the Detroit region[J]. Economic Geography, 1970, 46(sup1): 234-240.
[2] CRESSIE N A C. Statistics for spatial data[M]. New York: Wiley, 1993.
[3] CLIFF A D, ORD J K. Spatial autocorrelation[M]. London: Pion Ltd, 1973.
[4] ANSELIN L. Spatial econometrics: methods and models[M]. Dordrecht: Springer, 1988.
[5] KELEJIAN H H, PRUCHA I R. A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances[J]. The Journal of Real Estate Finance and Economics,1998, 17(1): 99-121.
[6] KELEJIAN H H, PRUCHA I R. A generalized moments estimator for the autoregressive parameter in a spatial model[J]. International Economic Review, 1999, 40(2): 509-533.
[7] LEE L F. Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models[J]. Econometrica, 2004, 72(6): 1899-1925.
[8] 陶长琪, 徐茉. 固定效应时异系数广义空间自回归模型的估计与模拟[J]. 数理统计与管理, 2023, 42(1): 65-82.
[9] 陈青青, 龙志和, 林光平. 面板数据空间误差分量模型的GMM估计及其应用[J]. 数理统计与管理, 2013, 32(1): 68-80.
[10] 陶长琪, 周璇. 含空间自回归误差项的空间动态面板模型的有效估计[J].数量经济技术经济研究, 2016, 33(4): 126-144.
[11] ANSELIN L. Thirty years of spatial econometrics[J]. Papers in Regional Science, 2010, 89(1): 3-26.
[12] ARBIA G. Spatial econometrics: statistical foundations and applications to regional convergence[M]. Berlin: Springer, 2006.
[13] LEE L F, YU J H. Estimation of spatial autoregressive panel data models with fixed effects[J]. Journal of Econometrics, 2010, 154(2): 165-185.
[14] LEE L F. Best spatial two-stage least squares estimators for a spatial autoregressive model with autoregressive disturbances[J]. Econometric Reviews, 2003, 22(4): 307-335.
[15] QU X, LEE L F, YU J H. QML estimation of spatial dynamic panel data models with endogenous time varying spatial weights matrices[J]. Journal of Econometrics, 2017, 197(2): 173-201.
[16] LIU X D, LEE L F, BOLLINGER C R, et al. An efficient GMM estimator of spatial autoregressive models[J]. Journal of Econometrics, 2010, 159(2): 303-319.
[17] LEE L F, YU J H. Efficient GMM estimation of spatial dynamic panel data models with fixed effects[J]. Journal of Econometrics, 2014, 180(2): 174-197.
[18] MA Y Y, GUO S J, WANG H S. Sparse spatio-temporal autoregressions by profiling and bagging[J]. Journal of Econometrics, 2023, 232(1): 132-147.
[19] OWEN A B. Empirical likelihood ratio confidence intervals for a single functional[J]. Biometrika, 1988, 75(2): 237-249.
[20] OWEN A. Empirical likelihood ratio confidence regions[J]. The Annals of Statistics, 1990, 18(1): 90-120.
[21] QIN J, LAWLESS J. Empirical likelihood and general estimating equations[J]. The Annals of Statistics, 1994, 22(1): 300-325.
[22] 张军舰. 非参数似然方法及其应用研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 150-159.
[23] OWEN A. Empirical likelihood for linear models[J]. The Annals of Statistics, 1991, 19(4): 1725-1747.
[24] KOLACZYK E D. Empirical likelihood for generalized linear models[J]. Statistica Sinica, 1994, 4: 199-218.
[25] QIN Y S. Empirical likelihood ratio confidence regions in a partly linear model[J]. Chinese Joural of Applied Probability and Statistics, 1999, 15(4): 363-369.
[26] JIN F, LEE L F. GEL estimation and tests of spatial autoregressive models[J]. Journal of Econometrics, 2019, 208(2): 585-612.
[27] QIN Y S. Empirical likelihood for spatial autoregressive models with spatial autoregressive disturbances[J]. Sankhya A, 2021, 83(1): 1-25.
[28] LI Y H, QIN Y S, LI Y. Empirical likelihood for nonparametric regression models with spatial autoregressive errors[J]. Journal of the Korean Statistical Society, 2021, 50(2): 447-478.
[29] RONG J R, LIU Y, QIN Y S, et al. Empirical likelihood for spatial dynamic panel data models with spatial lags and spatial errors[J]. Communications in Statistics-Theory and Methods, 2023, 52(18): 6658-6683.
[30] 曾庆樊, 秦永松, 黎玉芳. 一类空间面板数据模型的经验似然推断[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 30-42.
[31] 陶阳, 何帮强. 空间自回归固定效应面板数据模型的经验似然[J]. 安徽工程大学学报, 2022, 37(6): 75-84.
[32] 李龙飞. 空间计量经济学中的空间自回归模型[J]. 计量经济学报, 2021, 1(1): 36-65.
[33] 秦永松, 雷庆祝. 空间计量经济模型的经验似然研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 138-149.
[34] TSAO M. Bounds on coverage probabilities of the empirical likelihood ratio confidence regions[J]. The Annals of Statistics, 2004, 32(3): 1215-1221.
[35] OWEN A B. Empirical Likelihood[M]. Boca Raton: Chapman and Hall, 2001.
[36] BARTOLUCCI F. A penalized version of the empirical likelihood ratio for the population mean[J]. Statistics & Probability Letters, 2007, 77(1): 104-110.
[37] CHEN J H, VARIYATH A M, ANRAHAM B, et al. Adjusted empirical likelihood and its properties[J]. Journal of Computational and Craphical Statistics, 2008, 17(2): 426-443.
[38] EMERSON S C, OWEN A B. Calibration of the empirical likelihood method for a vector mean[J]. Electronic Journal of Statistics, 2009, 3: 1161-1192.
[39] KELEJIAN H H, PRUCHA I R. On the asymptotic distribution of the moran I test statistic with applications[J]. Journal of Econometrics, 2001, 104(2): 219-257.
[40] CHEN J, SITTER R R, WU C, et al. Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys[J]. Biometrika, 2002, 89(1): 230-237.
[41] 龚德鑫, 刘涛, 朱志华, 等. 空间自回归分析及其在R软件中的实现[J]. 华南预防医学, 2020, 46(4): 450-453.
[1] CAI Xuefeng, LI Tianjun, HUANG Lei. Research on Proportion of Out-of-Pocket Medical Expenses Based on Non-parametric Test and Multivariate Regression [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 115-123.
[2] ZHANG Zhifei, DUAN Qian, LIU Naijia, HUANG Lei. High-dimensional Nonlinear Regression Model Based on JMI [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 43-56.
[3] CHEN Zhongxiu, ZHANG Xingfa, XIONG Qiang, SONG Zefang. Estimation and Test for Asymmetric DAR Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 68-81.
[4] LIU Yu, ZHOU Wen, LI Ni. Semiparametric Rate Models for Recurrent Event Data with Cure Rate via Empirical Likelihood [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 139-149.
[5] ZHU Enwen, ZHU Anqi, WANG Jiedan, LIU Yujiao. Research on Wind Power Short-term Prediction Based on EEMD-GA-BP Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 166-174.
[6] YAN Haibo, DENG Gang, JIANG Yunlu. Robust Estimation of Multivariate Linear Regression Model Based on MRCD Estimation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 175-186.
[7] LIANG Xin, CHEN Xiaoling, ZHANG Xingfa, LI Yuan. A Class of Autoregressive Moving Average Model with GARCH Type Errors [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 195-205.
[8] TIAN Zhentao, ZHANG Junjian. Quantile Feature Screening for Ultra High Dimensional Censored Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 99-111.
[9] XIE Donglin, DENG Guohe. Pricing Forward-start Power Options with Product of Two Assets in a Stochastic Interest Rate and Jump Diffusion Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 158-172.
[10] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68-78.
[11] LIN Song, YIN Changming. Asymptotic Properties of Estimation of Penalized Generalized Estimating Equations for Two Stage Logit Models [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 126-130.
[12] HE Lin, YANG Shanchao. Asymptotic Variance Edge Frequency Polygons Estimator for α-Mixing Random Fields [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 88-94.
[13] LEI Qingzhu,QIN Yongsong,LUO Min. Empirical Bayes Estimation and Test for Scale ExponentialFamilies under Strong Mixing Samples [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 63-74.
[14] ZHANG Junjian, LAI Tingyu, YANG Xiaowei. Bayesian Empirical Likelihood Estimation on VaR and ES [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 38-45.
[15] ZHANG Xin-cheng, ZHANG Jun-jian, ZHAN Huan. A Goodness-of-fit Test Based on Empirical Euclidean Likelihood and Vertical Density Representation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 60-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Jie, SONG Shuang, WU Bin. Overview of Image USM Sharpening Forensics and Anti-forensics Techniques[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 1 -16 .
[2] AI Congcong, GONG Guoli, JIAO Xiaoyu, TIAN Lu, GAI Zhongchao, GOU Jingxuan, LI Hui. Komagataella phaffii Serves as a Model Organism for Emerging Basic Research[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 17 -26 .
[3] ZHAI Yanhao, WANG Yanwu, LI Qiang, LI Jingkun. Progress of Dissolved Organic Matter in Inland Water by Three-Dimensional Fluorescence Spectroscopy Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 34 -46 .
[4] CHEN Li, TANG Mingzhu, GUO Shenghui. Cyber-Physical Systems State Estimation and Actuator Attack Reconstruction of Intelligent Vehicles[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 59 -69 .
[5] LI Chengqian, SHI Chen, DENG Minyi. Study for the Electrocardiographic Signal of Brugada Syndrome Patients Using Cellular Automaton[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 86 -98 .
[6] LÜ Hui, LÜ Weifeng. Fundus Hemorrhagic Spot Detection Algorithm Based on Improved YOLOv5[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 99 -107 .
[7] YI Jianbing, PENG Xin, CAO Feng, LI Jun, XIE Weijia. Research on Point Cloud Registration Algorithm Based on Multi-scale Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 108 -120 .
[8] LI Li, LI Haoze, LI Tao. Multi-primary-node Byzantine Fault-Tolerant Consensus Mechanism Based on Raft[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 121 -130 .
[9] ZHAO Xiaomei, DING Yong, WANG Haitao. Maximum Likelihood DOA Estimation Based on Improved Monarch Butterfly Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 131 -140 .
[10] ZHU Yan, CAI Jing, LONG Fang. Statistical Analysis of Partially Step Stress Accelerated Life Tests for Compound Rayleigh Distribution Competing Failure Model Under Progressive Type-Ι Hybrid Censoring[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 159 -169 .