Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (2): 190-198.doi: 10.16088/j.issn.1001-6600.2025060402

• Mathematics and Statistics • Previous Articles     Next Articles

Improved Methods of Matching Quantile Regression and Their Applications

JIA Qichao, HUANG Lei*   

  1. School of Mathematics, Southwest Jiaotong University, Chengdu Sichuan 611756, China
  • Received:2025-06-04 Revised:2025-08-11 Published:2026-02-03

Abstract: To address the initial value sensitivity and outlier interference issues in the application of traditional quantile matching estimation to multi-dimensional data, an improved framework integrating global optimization strategies and robust loss functions is proposed. By integrating principal component analysis, ordinary least squares estimation, least absolute deviation estimation, and random initialization to construct a diverse set of initial values, combined with a multi-start search mechanism and genetic algorithm for global optimization, the risk of parameter estimation getting trapped in local optima is effectively reduced. Meanwhile, the square loss function is reconstructed into an absolute loss function to enhance model robustness. Monte Carlo simulation results show that the success rate of parameter estimation of the improved global optimization method is significantly increased from 5% of the traditional method to 82%; in contaminated data with 20% outliers, the average absolute error of parameter estimation using the absolute loss function is reduced by 14% compared with the square loss function. Empirical studies on sensor signals show that the improved methods GLOBAL-MQE(L1) and GLOBAL-MQE(L2) reduce the Wasserstein distance index by 55% and 45% respectively compared with the benchmark method MQE. The proposed global optimization strategy and robust loss mechanism significantly enhance the global convergence and anti-interference ability of model parameter estimation. The improved quantile prediction sequence can effectively maintain the statistical characteristics consistent with the real signal, providing a more reliable modeling tool for engineering data distribution matching.

Key words: matching quantile estimation, signal matching, global convergence algorithm, robust estimation

CLC Number:  O21
[1] 邢砾文, 姚文凯, 黄莹.基于深度学习的含未知复合故障多传感器信号故障诊断[J].重庆大学学报(自然科学版), 2020, 43(9):93-100.DOI:10.11835/j.issn.1000-582X.2020.09.010.
[2] 王骁贤, 陆思良, 何清波, 等.变转速工况下基于多传感器信号深度特征融合的电机故障诊断研究[J].仪器仪表学报, 2022, 43(3):59-67.DOI:10.19650/j.cnki.cjsi.J2108410.
[3] 郝大鹏, 巴寅亮, 李春兰.基于层次分析法模拟传感器信号的故障诊断[J].自动化技术与应用, 2019, 38(3):84-87, 108.DOI:10.3969/j.issn.1003-7241.2019.03.018.
[4] 王双, 韩冰冰, 李峰.面向多源传感器信号融合的滚动轴承多层自助最大熵法故障诊断[J].中国工程机械学报, 2023, 21(1):90-94.DOI:10.15999/j.cnki.311926.2023.01.011.
[5] 刘一飞, 张宁, 赵鹤达, 等.基于相似性度量的磁异信号匹配检测算法[J].电子测量与仪器学报, 2022, 36(9):103-110.DOI:10.13382/j.jemi.B2205238.
[6] 吕志良, 冯丽.基于频谱相似度的信号匹配方法研究[J].中国无线电, 2024(1):52-53.
[7] 徐阳, 罗明璋, 杜国锋.管道缺陷超声导波监测信号匹配追踪去噪[J].科学技术与工程, 2022, 22(13):5182-5189.DOI:10.3969/j.issn.1671-1815.2022.13.011.
[8] 刘水清.基于图像匹配与WiFi信号匹配的室内PDR定位方法[J].电子测量技术, 2023, 46(1):154-159.DOI:10.19651/j.cnki.emt.2210142.
[9] SGOUROPOULOS N, YAO Q W, YASTREMIZ C.Matching a distribution by matching quantiles estimation[J].Journal of the American Statistical Association, 2015, 110(510):742-759.DOI:10.1080/01621459.2014.929522.
[10] QIN S S, WU Y H.General matching quantiles M-estimation[J].Computational Statistics & Data Analysis, 2020, 147:106941.DOI:10.1016/j.csda.2020.106941.
[11] LIM H, KIM A K H.Matching a discrete distribution by Poisson matching quantiles estimation[J].Journal of Applied Statistics, 2024, 51(15):3102-3124.DOI:10.1080/02664763.2024.2337082.
[12] WU P, LIANG B S, XIA Y F, et al.Predicting disease risks by matching quantiles estimation for censored data[J].Mathematical Biosciences and Engineering, 2020, 17(5):4544-4562.DOI:10.3934/mbe.2020251.
[13] 吉洋莹, 潘雨辰, 黄磊.含顺序类别自变量的中位数惩罚回归及应用研究[J].重庆理工大学学报(自然科学), 2022, 36(11):257-265.DOI:10.3969/j.issn.1674-8425(z).2022.11.031.
[14] 蔡学峰, 李天俊, 黄磊.基于非参检验及多元回归分析的不同医保医疗费用自付比例研究:以成都市某医院Ⅱ型糖尿病患者为例[J].广西师范大学学报(自然科学版), 2024, 42(4):115-123.DOI:10.16088/j.issn.1001-6600.2023092003.
[15] 王景炜, 胡超竹, 李翰芳, 等.复合分位回归的贝叶斯经验似然推断[J].广西师范大学学报(自然科学版), 2024, 42(5):130-140.DOI:10.16088/j.issn.1001-6600.2023110304.
[16] 李灿, 杨建波, 李荣.部分线性变系数模型的贝叶斯复合分位数回归[J].广西师范大学学报(自然科学版), 2024, 42(5):117-129.DOI:10.16088/j.issn.1001-6600.2023102501.
[17] 李学文, 冯可馨, 王小刚.删失分位数回归模型中的多变点估计[J].山东大学学报(理学版), 2025, 60(2):96-104.DOI:10.6040/j.issn.1671-9352.0.2024.021.
[18] 周小英, 吉晨, 涂晓艺.基于线性化技术的变点分位数回归模型的估计与应用[J].山东大学学报(理学版), 2025, 60(3):69-76.DOI:10.6040/j.issn.1671-9352.0.2024.084.
[19] SRIVASTAV R K, SCHARDONG A, SIMONOVIC S P.Equidistance quantile matching method for updating IDF Curves under climate change[J].Water Resources Management, 2014, 28(9):2539-2562.DOI:10.1007/s11269-014-0626-y.
[20] LI H B, SHEFFIELD J, WOOD E F.Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching[J].Journal of Geophysical Research:Atmospheres, 2010, 115(D10):2009JD012882.DOI:10.1029/2009JD012882.
[21] DOMINICY Y, VEREDAS D.The method of simulated quantiles[J].Journal of Econometrics, 2013, 172(2):235-247.DOI:10.1016/j.jeconom.2012.08.010.
[22] JIANG L, LIU X B, PHILLIPS P C B, et al.Bootstrap inference for quantile treatment effects in randomized experiments with matched pairs[J].Review of Economics and Statistics, 2024, 106(2):542-556.DOI:10.1162/rest_a_01089.
[23] YANG S, ZHANG Y S.Multiply robust matching estimators of average and quantile treatment effects[J].Scandinavian Journal of Statistics, 2023, 50(1):235-265.DOI:10.1111/sjos.12585.
[1] RONG Jingjing, YE Jimin. A Model Selection Criterion Based on False Discovery Rate [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 110-118.
[2] WANG Yundi, DAI Jiajia, MAO Wei. Bayesian Joint Modeling of Skewed-Longitudinal and Survival Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(5): 175-184.
[3] ZHAO Yujie, YE Jimin. Statistical Analysis of Partially Accelerated Life Tests under Dependent Competing Risks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 129-139.
[4] TIAN Liang, DAI Jiajia, LI Xianqi. Additive Transformation Model of Multivariate Recurrent Events Data under Generalized Case Cohort Design [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 113-127.
[5] YANG Xiaolan, ZHANG Huiguo, HU Xijian. Local Maximum Likelihood Estimation of Heterogeneous Features with Spatial Autocorrelation and Its Application in Protection of Hand-Foot-Mouth Disease [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 179-192.
[6] YU Xuesong, XU Bao. Bayes Estimations of Burr Distribution under the Weighted p, q Symmetric Loss Function [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 186-193.
[7] LI Can, YANG Jianbo, LI Rong. Bayesian Composite Quantile Regression for a Partially Linear Variable Coefficient Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 117-129.
[8] WANG Jingwei, HU Chaozhu, LI Hanfang, LUO Youxi. Bayesian Empirical Likelihood Inference for Composite Quantile Regression [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 130-140.
[9] TANG Jie, QIN Yongsong. Adjusted Empirical Likelihood for Spatial Autoregressive Models with Spatial Autoregressive Disturbances [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 100-114.
[10] CAI Xuefeng, LI Tianjun, HUANG Lei. Research on Proportion of Out-of-Pocket Medical Expenses Based on Non-parametric Test and Multivariate Regression [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 115-123.
[11] ZHU Yan, CAI Jing, LONG Fang. Statistical Analysis of Partially Step Stress Accelerated Life Tests for Compound Rayleigh Distribution Competing Failure Model Under Progressive Type-Ι Hybrid Censoring [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 159-169.
[12] MENG Haizhen, ZHANG Zhengjia, QIN Yongsong. Empirical Likelihood Inference for Linear Models with MA Errors [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 144-154.
[13] DU Jierui, CUI Xia, LI Yuan. Estimating Interaction Effects Between a Treatment and Covariates Using the Rubin Causal Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 122-130.
[14] TIAN Shikun, TANG Shengda. Scheduling Policy of P2P Real-time Communication with Strict Delay in Fading Channel [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 122-130.
[15] QIN Yongsong, LEI Qingzhu. Review on Empirical Likelihood for Spatial Econometric Models [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 138-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TIAN Sheng, ZHAO Kailong, MIAO Jialin. Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 1 -9 .
[2] XU Xiuhong, ZHANG Jinyan, LU Yuling, LIANG Xiaoping, LIAO Guangfeng, LU Rumei. Research Progress of New C21 Steroids in Medicinal Plants of Asclepiadaceae(Ⅱ)[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 1 -16 .
[3] WANG Xingyu, ZHENG Haonan, LIU Xiao, CUI Shilong, CAI Jinjun. Research Progress on Preparation of Chitosan-based Adsorbents andTheir Applications Towards Adsorptive Removal of Pollutants From Water[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 17 -30 .
[4] TIAN Sheng, FENG Shuaitao, LI Jia. A Framework for Enhanced Vehicle Trajectory Extraction in Urban Road Scenes[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 31 -51 .
[5] LÜ Hui, SI Ke. Photovoltaic Panel Defect Detection Based on Improved RT-DETR[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 52 -64 .
[6] SONG Guanwu, LI Jianjun. Semantic Segmentation of Remote Sensing Images Basedon Self-distillation Edge Refinement[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 65 -76 .
[7] WANG Xuyang, LIANG Yuhang. Multi-scale Asymmetric Attention Transformer for Remote Sensing Image Dehazing[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 77 -89 .
[8] ZHANG Shengwei, CAO Jie. Detection Algorithm of Tiny Defects on Steel Surface Based onFourier Convolution and Difference Perception[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 90 -102 .
[9] WANG Wei, LI Zhiwei, ZHANG Zhaoyang, ZHANG Hong, ZHOU Li, WANG Zhen, HUANG Fang, WANG Can. Carbon Emission Prediction of Substation Based on IFA-BP Neural Network Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 103 -114 .
[10] LUO Yuan, ZHU Wenzhong, WANG Wen, WU Yuhao. A Multi-step Water Quality Prediction Model Based on Improved PatchTST[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 115 -131 .