Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (2): 52-64.doi: 10.16088/j.issn.1001-6600.2025060302

• Intelligence Information Processing • Previous Articles     Next Articles

Photovoltaic Panel Defect Detection Based on Improved RT-DETR

LÜ Hui*, SI Ke   

  1. School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo Henan 454150, China
  • Received:2025-06-03 Revised:2025-07-18 Published:2026-02-03

Abstract: In order to address the issues of low accuracy, large model parameters, and the occurrences of missed detections and false detections under complex backgrounds in the existing traditional photovoltaic panel defect detection, this paper proposes an efficient photovoltaic panel defect detection algorithm based on the RT-DETR model. Firstly, to boost detection accuracy, the FREBlock architecture is developed, which not only improves feature extraction but also enhances detection efficiency. Secondly, the CRDFP multi-scale feature fusion structure is designed to strengthen the integration of features across different scales. Lastly, the deformable attention mechanism is incorporated, which enables the model to focus on the information features of the region of interest. The experimental results indicate that the improved model achieves an average mean Average Precision (mAP) of 79.2%, an increase of 3.6 percentage points over the traditional model. Additionally, the model's parameters reduces 22.6%, and the computational load decreases 25.9%, demonstrating a high capacity for real-time detection.

Key words: deep learning, RT-DETR, photovoltaic panels, defect detection, multi-scale feature fusion

CLC Number:  TM615;TP391.41
[1] 王文静, 王斯成.我国分布式光伏发电的现状与展望[J].中国科学院院刊, 2016, 31(2):165-172.DOI:10.16418/j.issn.1000-3045.2016.02.002.
[2] SU B Y, CHEN H Y, ZHOU Z.BAF-detector:an efficient CNN-based detector for photovoltaic cell defect detection[J].IEEE Transactions on Industrial Electronics, 2022, 69(3):3161-3171.DOI:10.1109/TIE.2021.3070507.
[3] 吴涛, 赖菲.基于LeNet-5模型的太阳能电池板缺陷识别分类[J].热力发电, 2019, 48(3):120-125.DOI:10.19666/j.rlfd.201807147.
[4] GUERRIERO P, DI NAPOLI F, VALLONE G, et al.Monitoring and diagnostics of PV plants by a wireless self-powered sensor for individual panels[J].IEEE Journal of Photovoltaics, 2015, 6(1):286-294.DOI:10.1109/JPHOTOV.2015.2484961.
[5] REDMON J, FARHADI A.YOLOv3:an incremental improvement[EB/OL].(2018-04-08)[2025-09-08].https://ui.adsabs.harvard.edu/abs/2018arXiv180402767R.DOI:10.48550/arXiv.1804.02767.
[6] LI C, LI L, JIANG H, et al.YOLOv6:a single-stage object detection framework for industrial applications[EB/OL].(2022-09-07)[2025-09-08].https://ui.adsabs.harvard.edu/abs/2022arXiv220902976L.DOI:10.48550/arXiv.2209.02976.
[7] WANG C Y, BOCHKOVSKIY A, LIAO H M.YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway,NJ:IEEE, 2023:7464-7475.DOI:10.1109/CVPR52729.2023.00721.
[8] REIS D, KUPEC J, HONG J, et al.Real-time flying object detection with YOLOv8[EB/OL].(2024-05-22)[2025-09-08].https://ui.adsabs.harvard.edu/abs/2023arXiv230509972R.DOI:10.48550/arXiv.2305.09972.
[9] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.DOI:10.1109/TPAMI.2016.2577031.
[10] ZHANG T Y, CHEN C Y, LIU Y, et al.PSRR-MaxpoolNMS++:fast non-maximum suppression with discretization and pooling[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025, 47(2):978-993.DOI:10.1109/TPAMI.2024.3485898.
[11] ALSHEHRI M, OUADOU A, SCOTT G J.Deep transformer-based network deforestation detection in the Brazilian Amazon using sentinel-2 imagery[J].IEEE Geoscience and Remote Sensing Letters, 2024, 21:2502705.
[12] CARION N, MASSA F, SYNNAEVE G, et al.End-to-end object detection with transformers[C]//Computer Vision- ECCV 2020.Cham:Springer, 2020:213-229.DOI:10.1007/978-3-030-58452-8_13.
[13] ZHU X, SU W, LU L, et al.Deformable DETR:deformable transformers for end-to-end object Detection[EB/OL].(2021-03-18)[2025-09-08].https://ui.adsabs.harvard.edu/abs/2020arXiv201004159Z.DOI:10.48550/arXiv.2010.04159.
[14] SHEHZADI T, HASHMI K A, STRICKER D, et al.Sparse semi-DETR:sparse learnable queries for semi-supervised object detection[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway,NJ:IEEE, 2024:5840-5850.DOI:10.1109/CVPR52733.2024.00558.
[15] ZHANG H, LI F, LIU S, et al.DINO:DETR with improved denoising anchor boxes for end-to-end object detection[EB/OL].(2022-07-11)[2025-09-08].https://ui.adsabs.harvard.edu/abs/2022arXiv220303605Z.DOI:10.48550/arXiv.2203.03605.
[16] ZHAO Y A, LV W Y, XU S L, et al.DETRs beat YOLOs on real-time object detection[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway,NJ:IEEE, 2024:16965-16974.DOI:10.1109/CVPR52733.2024.01605.
[17] 苏俊, 唐潮龙, 刘智权, 等.基于全局与局部特征提取增强的光伏板缺陷检测算法[J].计算机工程与应用, 2025, 61(12):299-310.DOI:10.3778/j.issn.1002-8331.2412-0035.
[18] CHEN J R, KAO S H, HE H, et al.Run, don’t walk:chasing higher FLOPS for faster neural networks[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway,NJ:IEEE, 2023:12021-12031.DOI:10.1109/CVPR52729.2023.01157.
[19] DING X H, ZHANG X Y, MA N N, et al.RepVGG:making VGG-style ConvNets great again[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway,NJ:IEEE, 2021:13728-13737.DOI:10.1109/CVPR46437.2021.01352.
[20] CHINTHAKA D, FERNANDO S.Multi-scale efficient attention net for person re-identification[C]//2024 International Conference on Advances in Technology and Computing (ICATC).Piscataway,NJ:IEEE, 2024:1-6.DOI:10.1109/ICATC 64549.2024.11025307.
[21] XIA Z F, PAN X R, SONG S J, et al.Vision transformer with deformable attention[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway,NJ:IEEE, 2022:4784-4793..DOI:10.1109/cvpr52688.2022.00475.
[22] NI Z L, CHEN X H, ZHAI Y J, et al.Context-guided spatial feature reconstruction for efficient semantic segmentation[C]//Computer Vision-ECCV 2024.Cham:Springer, 2025:239-255.DOI:10.1007/978-3-031-72943-0_14.
[23] 刘沅林, 金建辉, 李盛洪, 等.PV-HSD-2025:面向光伏热斑检测的红外基准数据集与YOLOv8-P1增强架构[J/OL].计算机工程与应用:1-19.[2025-09-08].https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JSGG2025041100E& dbname=CJFD&dbcode=CJFQ.
[1] TIAN Sheng, FENG Shuaitao, LI Jia. A Framework for Enhanced Vehicle Trajectory Extraction in Urban Road Scenes [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 31-51.
[2] WANG Xuyang, LIANG Yuhang. Multi-scale Asymmetric Attention Transformer for Remote Sensing Image Dehazing [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 77-89.
[3] ZHANG Shengwei, CAO Jie. Detection Algorithm of Tiny Defects on Steel Surface Based onFourier Convolution and Difference Perception [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 90-102.
[4] LUO Yuan, ZHU Wenzhong, WANG Wen, WU Yuhao. A Multi-step Water Quality Prediction Model Based on Improved PatchTST [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 115-131.
[5] HAN Huabin, GAO Bingpeng, CAI Xin, SUN Kai. Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 13-28.
[6] WEI Zishu, CHEN Zhigang, WANG Yanxue, Hasitieer Madetihan. Lightweight Bearing Defect Detection Algorithm Based on SBSI-YOLO11 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 80-91.
[7] LIU Tinghan, LIANG Yan, HUANG Pengsheng, BI Jinjie, HUANG Shoulin, LI Tinghui. Facial Acne Detection for Small Object Based on Improved YOLOv8s [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(5): 114-129.
[8] LI Zongxiao, ZHANG Jian, LUO Xinyue, ZHAO Yifei, LU Fei. Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 15-23.
[9] SHI Tianyi, NAN Xinyuan, GUO Xiangyu, ZHAO Pu, CAI Xin. Improved ConvNeXt-based Algorithm for Apple Leaf Disease Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 83-96.
[10] LIANG Yinjie, NAN Xinyuan, CAI Xin, LI Yunpeng, GOU Haiguang. Bridge Defect Detection Based on Data Augmentation and Improved YOLOv8 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 84-97.
[11] SU Chunhai, XIA Haiying. Facial Expression Recognition Based on Noise-Resistant Dual Constraint Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 70-82.
[12] DAI Linhua, LI Yuansong, SHI Rui, HE Zhongliang, LI Lei. HSED-YOLO: A Lightweight Model for Detecting Surface Defects in Strip Steel [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 95-106.
[13] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89-100.
[14] HOU Haiyan, TAN Yumei, SONG Shuxiang, XIA Haiying. Head Pose-Robust Facial Expression Recognition [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 126-137.
[15] LU Jiahui, CHEN Qingfeng, WANG Wenguang, YU Qian, HE Naixu, HAN Zongzhao. Multi-scale Attention Learning for Abdomen Multi-organ Image Segmentation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 138-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TIAN Sheng, ZHAO Kailong, MIAO Jialin. Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 1 -9 .
[2] XU Xiuhong, ZHANG Jinyan, LU Yuling, LIANG Xiaoping, LIAO Guangfeng, LU Rumei. Research Progress of New C21 Steroids in Medicinal Plants of Asclepiadaceae(Ⅱ)[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 1 -16 .
[3] WANG Xingyu, ZHENG Haonan, LIU Xiao, CUI Shilong, CAI Jinjun. Research Progress on Preparation of Chitosan-based Adsorbents andTheir Applications Towards Adsorptive Removal of Pollutants From Water[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 17 -30 .
[4] TIAN Sheng, FENG Shuaitao, LI Jia. A Framework for Enhanced Vehicle Trajectory Extraction in Urban Road Scenes[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 31 -51 .
[5] SONG Guanwu, LI Jianjun. Semantic Segmentation of Remote Sensing Images Basedon Self-distillation Edge Refinement[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 65 -76 .
[6] WANG Xuyang, LIANG Yuhang. Multi-scale Asymmetric Attention Transformer for Remote Sensing Image Dehazing[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 77 -89 .
[7] ZHANG Shengwei, CAO Jie. Detection Algorithm of Tiny Defects on Steel Surface Based onFourier Convolution and Difference Perception[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 90 -102 .
[8] WANG Wei, LI Zhiwei, ZHANG Zhaoyang, ZHANG Hong, ZHOU Li, WANG Zhen, HUANG Fang, WANG Can. Carbon Emission Prediction of Substation Based on IFA-BP Neural Network Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 103 -114 .
[9] LUO Yuan, ZHU Wenzhong, WANG Wen, WU Yuhao. A Multi-step Water Quality Prediction Model Based on Improved PatchTST[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 115 -131 .
[10] CHEN Silin, LIU Jiafei, ZHOU Hexin, WU Jingli, LI Gaoshi. Critical Node Identification in Complex Network Based on Multi-feature Gravity Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 132 -144 .