Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (2): 90-102.doi: 10.16088/j.issn.1001-6600.2025041402

• Intelligence Information Processing • Previous Articles     Next Articles

Detection Algorithm of Tiny Defects on Steel Surface Based onFourier Convolution and Difference Perception

ZHANG Shengwei 1, CAO Jie 1,2*   

  1. 1. College of Computer and Communication, Lanzhou University of Technology, Lanzhou Gansu 730050, China;
    2. College of Information Engineering, Lanzhou City University, Lanzhou Gansu 730070, China
  • Received:2025-04-14 Revised:2025-08-28 Published:2026-02-03

Abstract: In order to solve the problem that current steel surface defect detection methods are ineffective in detecting small defects, an algorithm for detecting small defects on the steel surface that integrates Fourier convolution and difference perception is proposed. The algorithm uses CSP-FFCM to replace the BasicBlock in the backbone network, and performs convolution operations in the spatial and frequency domains to reduce the computational overhead and enhance the feature extraction capability of the network. Then, a multi-scale feature layer optimization strategy is proposed, which optimizes the allocation of computational resources while preserving fine-grained feature information to ensure that the model effectively captures the detailed information of tiny defects. Finally, a difference-aware feature enhancement module is designed to further improve the model’s detection performance of tiny defects by strengthening the feature representation capability of tiny defects. The experimental results show that the algorithm achieves mAP indexes of 83.7% and 73.1% on the NEU-DET and GC10-DET datasets, respectively, and exhibits significant performance advantages in the task of high-precision detection of tiny defects on steel surfaces.

Key words: minor defect detection, Fourier convolution, multi-scale feature layer optimisation, difference perception

CLC Number:  TP391.41;TP183;TG142
[1] 曹家乐, 李亚利, 孙汉卿, 等.基于深度学习的视觉目标检测技术综述[J].中国图象图形学报, 2022, 27(6):1697-1722.DOI:10.11834/jig.220069.
[2] LIU G H, MA Q W.Strip steel surface defect detecting method combined with a multi-layer attention mechanism network[J].Measurement Science and Technology, 2023, 34(5):055403.DOI:10.1088/1361-6501/acb5b5.
[3] ZHAO C, SHU X, YAN X, et al.RDD-YOLO:a modified YOLO for detection of steel surface defects[J].Measurement, 2023, 214:112776.DOI:10.1016/j.measurement.2023.112776.
[4] 朱传军, 梁泽启, 付强, 等.针对钢材表面小目标缺陷实时检测[J].组合机床与自动化加工技术, 2023(11):133-137.DOI:10.13462/j.cnki.mmtamt.2023.11.028.
[5] ZHANG T, PAN P F, ZHANG J, et al.Steel surface defect detection algorithm based on improved YOLOv8n[J].Applied Sciences, 2024, 14(12):5325.DOI:10.3390/app14125325.
[6] 黎源东, 贺智明.一种改进YOLOv8的钢材表面缺陷检测算法[J].软件导刊, 2024, 23(11):200-205.DOI:10.11907/rjdk.232108.
[7] 黄奥国, 罗小玲, 潘新.STC-YOLOv8:一种解决复杂背景下的钢材表面缺陷的检测方法[J].内蒙古农业大学学报(自然科学版), 2024, 45(5):67-76.DOI:10.16853/j.cnki.1009-3575.2024.05.009.
[8] 冯夫健, 罗太维, 谭棉, 等.基于自注意特征融合的钢材表面小目标缺陷检测[J].电子测量技术, 2024, 47(19):172-180.DOI:10.19651/j.cnki.emt.2416536.
[9] HE L Y, ZHENG L J, XIONG J P.FMV-YOLO:a steel surface defect detection algorithm for real-world scenarios[J].Electronics, 2025, 14(6):1143.DOI:10.3390/electronics14061143.
[10] 张航, 周毅, 邱宇峰.融合HGnetv2和注意力机制的钢材表面缺陷检测方法[J].电子测量与仪器学报, 2025, 39(1):36-49.DOI:10.13382/j.jemi.B2407618.
[11] ASHRAFI S, TEYMOURI S, ETAATI S, et al.Steel surface defect detection and segmentation using deep neural networks[J].Results in Engineering, 2025, 25:103972.DOI:10.1016/j.rineng.2025.103972.
[12] CHEN J H, JIN W L, LIU Y F, et al.Multi-scale and dynamic snake convolution-based YOLOv9 for steel surface defect detection[J].The Journal of Supercomputing, 2025, 81(4):541.DOI:10.1007/s11227-025-07036-w.
[13] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Los Alamitos, CA:IEEE Computer Society, 2016:770-778.DOI:10.1109/CVPR.2016.90.
[14] CARION N, MASSA F, SYNNAEVE G, et al.End-to-end object detection with transformers[C]//Computer Vision - ECCV 2020:LNCS Volume 12346.Cham:Springer Nature Switzerland AG, 2020:213-229.DOI:10.1007/978-3-030-58452-8_13.
[15] ZHAO Y A, LV W Y, XU S L, et al.DETRs beat YOLOs on real-time object detection[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Los Alamitos, CA:IEEE Computer Society, 2024:16965-16974.DOI:10.1109/CVPR52733.2024.01605.
[16] 张志从, 崔东, 郭金锋, 等.基于迁移学习ResNet-18的水稻病虫害识别研究[J].中国农学通报, 2025, 41(2):109-116.DOI:10.11924/j.issn.1000-6850.casb2024-0387.
[17] GAO N, JIANG X Y, ZHANG X H, et al.Efficient frequency-domain image deraining with contrastive regularization[C]//Computer Vision - ECCV 2024:LNCS Volume 15099.Cham:Springer Nature Switzerland AG, 2024:240-257.DOI:10.1007/978-3-031-72940-9_14.
[18] 李扬, 陈伟, 杨清永, 等.基于大核分离和通道先验卷积注意的PCB缺陷检测方法[J].燕山大学学报, 2024, 48(6):519-527, 549.DOI:10.3969/j.issn.1007-791X.2024.06.006.
[19] 姜贸翔, 司占军, 王晓喆.改进RT-DETR的无人机图像目标检测算法[J].计算机工程与应用, 2025, 61(1):98-108.DOI:10.3778/j.issn.1002-8331.2405-0331.
[20] HE Y, SONG K C, MENG Q G, et al.An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J].IEEE Transactions on Instrumentation and Measurement, 2020, 69(4):1493-1504.DOI:10.1109/TIM.2019.2915404.
[21] LV X M, DUAN F J, JIANG J J, et al.Deep metallic surface defect detection:the new benchmark and detection network[J].Sensors, 2020, 20(6):1562.DOI:10.3390/s20061562.
[22] KHANAM R, HUSSAIN M.YOLOv11:an overview of the key architectural enhancements[EB/OL].(2024-10-23)[2025-04-14].https://www.arxiv.org/abs/2410.17725.DOI:10.48550/arXiv.2410.17725.
[23] GAO S S, CHU M H, ZHANG L.A detection network for small defects of steel surface based on YOLOv7[J].Digital Signal Processing, 2024, 149:104484.DOI:10.1016/j.dsp.2024.104484.
[24] 王宁, 智敏.深度学习下的单阶段通用目标检测算法研究综述[J].计算机科学与探索, 2025, 19(5):1115-1140.DOI:10.3778/j.issn.1673-9418.2411032.
[1] TIAN Sheng, ZHAO Kailong, MIAO Jialin. Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 1-9.
[2] HUANG Wenjie, LUO Weiping, CHEN Zhennan, PENG Zhixiang, DING Zihao. Research on Lightweight PCB Defect Detection Algorithm Based on YOLO11 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 56-67.
[3] LI Fengwei, TAN Yumei, SONG Shuxiang, XIA Haiying. Occlusion-Aware Facial Expression Recognition Based on Attention Guidance [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(5): 104-113.
[4] LIU Tinghan, LIANG Yan, HUANG Pengsheng, BI Jinjie, HUANG Shoulin, LI Tinghui. Facial Acne Detection for Small Object Based on Improved YOLOv8s [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(5): 114-129.
[5] YI Jianbing, ZHANG Yuxian, CAO Feng, LI Jun, PENG Xin, CHEN Xin. Design of 3D Human Pose Estimation Network Based on Spatio-Temporal Attention [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(5): 130-144.
[6] TIAN Sheng, XIONG Chenyin, LONG Anyang. Point Cloud Classification Method of Urban Roads Based on Improved PointNet++ [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 1-14.
[7] LI Zhixin, KUANG Wenlan. Fine-grained Image Classification Combining Adaptive Spatial Mutual Attention and Feature Pair Integration Discrimination [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 69-82.
[8] SHI Tianyi, NAN Xinyuan, GUO Xiangyu, ZHAO Pu, CAI Xin. Improved ConvNeXt-based Algorithm for Apple Leaf Disease Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 83-96.
[9] TANG Liang, CHEN Bowen, NIU Yisen, MA Ronggeng. A YOLOv8-based Real-time Object Detection Method for Vehicles and Pedestrians in Foggy Weather [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 72-83.
[10] LIANG Yinjie, NAN Xinyuan, CAI Xin, LI Yunpeng, GOU Haiguang. Bridge Defect Detection Based on Data Augmentation and Improved YOLOv8 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 84-97.
[11] GUO Xiangyu, SHI Tianyi, CHEN Yannan, NAN Xinyuan, CAI Xin. Research on Foreign Object Detection in Railway Overhead Contact System Based on YOLO-CDBW Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 56-69.
[12] SU Chunhai, XIA Haiying. Facial Expression Recognition Based on Noise-Resistant Dual Constraint Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 70-82.
[13] LIU Yuna, MA Shuangbao. Fabric Defect Detection Based on Improved Lightweight YOLOv8n [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 83-94.
[14] DAI Linhua, LI Yuansong, SHI Rui, HE Zhongliang, LI Lei. HSED-YOLO: A Lightweight Model for Detecting Surface Defects in Strip Steel [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 95-106.
[15] LIU Junjie, MA Kai, HUANG Zehua, TIAN Miao, QIU Qinjun , TAO Liufeng, XIE Zhong. Geological Structure Recognition Based on Transfer Learning and Channel Prior Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 107-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TIAN Sheng, ZHAO Kailong, MIAO Jialin. Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 1 -9 .
[2] XU Xiuhong, ZHANG Jinyan, LU Yuling, LIANG Xiaoping, LIAO Guangfeng, LU Rumei. Research Progress of New C21 Steroids in Medicinal Plants of Asclepiadaceae(Ⅱ)[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 1 -16 .
[3] WANG Xingyu, ZHENG Haonan, LIU Xiao, CUI Shilong, CAI Jinjun. Research Progress on Preparation of Chitosan-based Adsorbents andTheir Applications Towards Adsorptive Removal of Pollutants From Water[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 17 -30 .
[4] TIAN Sheng, FENG Shuaitao, LI Jia. A Framework for Enhanced Vehicle Trajectory Extraction in Urban Road Scenes[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 31 -51 .
[5] LÜ Hui, SI Ke. Photovoltaic Panel Defect Detection Based on Improved RT-DETR[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 52 -64 .
[6] SONG Guanwu, LI Jianjun. Semantic Segmentation of Remote Sensing Images Basedon Self-distillation Edge Refinement[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 65 -76 .
[7] WANG Xuyang, LIANG Yuhang. Multi-scale Asymmetric Attention Transformer for Remote Sensing Image Dehazing[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 77 -89 .
[8] WANG Wei, LI Zhiwei, ZHANG Zhaoyang, ZHANG Hong, ZHOU Li, WANG Zhen, HUANG Fang, WANG Can. Carbon Emission Prediction of Substation Based on IFA-BP Neural Network Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 103 -114 .
[9] LUO Yuan, ZHU Wenzhong, WANG Wen, WU Yuhao. A Multi-step Water Quality Prediction Model Based on Improved PatchTST[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 115 -131 .
[10] CHEN Silin, LIU Jiafei, ZHOU Hexin, WU Jingli, LI Gaoshi. Critical Node Identification in Complex Network Based on Multi-feature Gravity Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 132 -144 .