Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (3): 144-154.doi: 10.16088/j.issn.1001-6600.2022070601

Previous Articles     Next Articles

Empirical Likelihood Inference for Linear Models with MA Errors

MENG Haizhen, ZHANG Zhengjia*, QIN Yongsong   

  1. School of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2022-07-06 Revised:2022-08-22 Online:2023-05-25 Published:2023-06-01

Abstract: In this paper, the quasi maximum likelihood estimation method is used to obtain the estimation equation of the linear model with MA errors. In order to use the empirical likelihood method, the quadratic form in the estimation equation is transformed into a linear form of a martingale difference array, and then the empirical likelihood ratio statistics of the model parameters are constructed. Under certain assumptions, it is proved that the statistics asymptotically obey the chi-square distribution. Finally, the simulation resucts show that the empirical likehood method is closer to the confidence level than the parametric likehood method in terms of the coverage of confidence region.

Key words: linear model, MA model, martingale difference array, empirical likelihood

CLC Number:  O212.7
[1] OWEN A B. Empirical likelihood ratio confidence intervals for a single functional[J]. Biometrika, 1988, 75(2): 237-249.
[2] OWEN A. Empirical likelihood ratio confidence regions[J]. The Annals of Statistics, 1990, 18(1): 90-120.
[3] 王启华.经验似然统计推断方法发展综述[J]. 数学进展, 2004, 33(2): 141-151.
[4] OWEN A. Empirical likelihood for linear models[J]. The Annals of Statistics, 1991, 19(4): 1725-1747.
[5] QIN J, LAWLESS J. Empirical likelihood and general estimating equations[J]. The Annals of Statistics, 1994, 22(1): 300-325.
[6] KOLACZYK E D. Empirical likelihood for generalized linear models[J]. Statistica Sinica, 1994, 4(1): 199-218.
[7] WANG Q H, JING B Y. Empirical likelihood for partial linear models with fixed designs[J]. Statistics and Probability Letters, 1999, 41(4): 425-433.
[8] WANG Q H, JING B Y. Empirical likelihood for partial linear models[J]. Annals of the Institute of Statistical Mathematics, 2003, 55(3): 585-595.
[9] 薛留根,朱力行. 部分线性单指标模型中参数的经验似然置信域[J]. 中国科学(A辑: 数学), 2005, 35(8): 841-855.
[10] QIN Y S, JIANG B, LI Y F. Empirical likelihood for linear models under m-dependent errors[J]. Applied Mathematics: A Journal of Chinese Universities, 2005, 20(2): 205-212.
[11] 于卓熙.相依误差下部分线性模型的经验似然统计推断[D]. 长春: 吉林大学, 2010.
[12] 范国良,徐红霞.线性过程误差下部分线性回归模型的经验似然推断[J]. 安徽工程科技学院学报(自然科学版), 2010, 25(4): 63-66.
[13] 骆丽骏.线性过程误差下非参数模型的经验似然[D]. 桂林: 广西师范大学, 2011.
[14] 李晓妍.带线性误差的部分线性EV模型的经验似然推断[J]. 统计与决策, 2017, 19(4): 18-23.
[15] 马昀蓓.相依误差下线性模型的经验似然推断[D]. 北京: 北京工业大学, 2006.
[16] 侯文,姜爱宇.鞅差序列误差下线性模型的经验似然推断[J]. 统计与决策, 2011, 16(16): 163-164.
[17] 李英华.缺失数据下强混合样本情形的经验似然[J]. 广西师范大学学报(自然科学版), 2014, 32(1): 51-56.
[18] 江志强,范国良.鞅差误差下部分函数线性模型的经验似然推断[J]. 安徽工程大学学报, 2016, 31(5): 75-79,84.
[19] 周婷,秦永松.带固定效应空间误差面板数据模型的经验似然推断[J]. 数学杂志, 2020, 40(5): 551-564.
[20] 曾庆樊,秦永松,黎玉芳.一类空间面板数据模型的经验似然推断[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 30-42.
[21] CHUANG C S, CHAN N H. Empirical likelihood for autoregressive models, with applications to unstable time series[J]. Statistica Sinica, 2002, 12(2): 387-407.
[22] 李凯,张丽君.二阶部分线性自回归模型的经验似然估计[J]. 统计与决策, 2015, 12(5): 75-77.
[23] 陈惠汝.p阶自回归模型的经验似然统计诊断[J]. 统计与决策, 2015, 12(3): 13-16.
[24] QIN Y S. Empirical likelihood for spatial autoregressive models with spatial autoregressive disturbances[J]. Sankhya A, 2021, 83(1): 1-25.
[25] LI Y H, QIN Y S. Empirical likelihood for moving average models[J]. Communication in Statistics-Theory and Methods, 2021, 50(15): 3661-3676.
[26] MONTI A C. Empirical likelihood confidence regions in time series models[J]. Biometrika, 1997, 84(2): 395-405.
[27] LI J Y, LIANG W, HE S Y. Empirical likelihood for partial parameters in ARMA models with infinite variance[J]. Journal of Applied Mathematics, 2014, 2014(01): 1-10.
[28] 张海祥,王德辉.平稳ARIMA(p,d,q)模型的经验似然推断[J]. 吉林大学学报, 2009, 47(5): 871-876.
[29] 陈燕红.时间序列模型的经验似然推断[D]. 大连: 大连理工大学, 2013.
[30] CHAN N H, LING S Q. Empirical likelihood for GARCH models[J]. Econometric Theory, 2006, 22(3): 403-428.
[31] KELEJIAN H H, PRUCHA I R. On the asymptotic distribution of the Moran I test statistic with applications[J]. Journal of Econometrics, 2001, 104(2): 219-257.
[1] QIN Yongsong, LEI Qingzhu. Review on Empirical Likelihood for Spatial Econometric Models [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 138-149.
[2] ZHANG Junjian. Review on Nonparametric Likelihood and Their Applications [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 150-159.
[3] BAI Defa, XU Xin, WANG Guochang. Review of Generalized Linear Models and Classification for Functional Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 15-29.
[4] ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30-42.
[5] REN Shuai, CHENG Wenhui, ZHOU Jie. Estimation of the Mixed Generalized Partially Linear Additive Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 108-124.
[6] LIU Yu, ZHOU Wen, LI Ni. Semiparametric Rate Models for Recurrent Event Data with Cure Rate via Empirical Likelihood [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 139-149.
[7] YAN Haibo, DENG Gang, JIANG Yunlu. Robust Estimation of Multivariate Linear Regression Model Based on MRCD Estimation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 175-186.
[8] GE Yingying, LI Mei. Optimal Harvesting Problem for a Class of Quasilinear Non-autonomous Models [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 54-61.
[9] ZHANG Junjian, LAI Tingyu, YANG Xiaowei. Bayesian Empirical Likelihood Estimation on VaR and ES [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 38-45.
[10] DING Xin-yue, XU Mei-ping. Computing VaR and ES Based on the Extreme Value Theory:A Case Study of ZTE Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 76-81.
[11] QIN Yong-song, YANG Cui-lian. Empirical Likelihood for Marginal Joint Probability Density Functions of a Negatively Associated Sample [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 22-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIN Yue. The Fault Diagnosis of Charging Piles Based on Hybrid AP-HMM Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 25 -33 .
[2] LU Jiakuan, QIU Yanyan. The Influence of Weakly s-supplemented Subgroups on Solvability of Finite Groups[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 49 -52 .
[3] ZHOU Wei, SUN Chao, ZHOU Haitao. Nomenclatural Status Textual Criticism about Two Species of Garrafrom Lancangjiang(the Upper Mekong), China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 117 -125 .
[4] LI Jianhong, MENG Xinyuan, ZHAI Luxin, WANG Yue. Analysis of the Trend of Extreme Continuous Precipitation underClimate Change Condition in Guangxi,China, from 1951 to 2006[J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 187 -196 .
[5] HE Peng, LIU Gao-kai, LI Jing-hui. Fatigue Driving Monitoring and Early Warning System Based on Machine Vision[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 25 -29 .
[6] GUO Min, LIAO Yue-kui, XU Ling-ying, XIAN Yu-jun, HE Bao-zuo. Identification Characters of Leaf Morphological and Venation Pattern of Ilex cornuta with Its Confused Herb Mahonia bodinieri[J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 97 -103 .
[7] CHEN Danni, CHEN Zhilin, ZHOU Shanyi. A Checklist of Family Formicidae of China: Myrmecinae (Addendum) (Insect: Hymenoptera)[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 87 -97 .
[8] ZHANG Xiaolei, ZHAO Wei, WANG Fanggui. On φ-flat Cotorsion Theory[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 119 -124 .
[9] LUO Shuyi, LI Yongtai, WU Zhengjun, CHENG Rui, CHEN Yaohuan, HE Jiasong. Influencing Factors of Perch Height of Shinisaurus crocodilurus in Daguishan Mountain, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 182 -189 .
[10] ZHANG Shiyan, XIE Qiang, HUANG Lijuan, HUANG Qing, FENG Xueyu, SU Hualong. Niche Analysis of Main Populations in Cyclobalanopsis glauca Community in Lingqu Basin of Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 162 -173 .