Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (2): 175-189.doi: 10.16088/j.issn.1001-6600.2025050801

• Mathematics and Statistics • Previous Articles     Next Articles

Two-Stage PINNs Method with Adaptive Weights for SolvingPartial Differential Equations

XIE Xiang, JIANG Linfeng, YANG Fenglian*   

  1. School of Mathematics, Hohai University, Nanjing Jiangsu 210000, China
  • Received:2025-05-08 Revised:2025-07-03 Published:2026-02-03

Abstract: Aiming at the problem of insufficient accuracy of traditional Physical information neural networks (PINNs) when dealing with high-frequency features, this paper proposes a two-stage PINNs method based on adaptive weights (AWTS-PINNs) to solve partial differential equations with high-frequency solutions. This method is based on a two-stage training framework combining pre-training and fine-tuning. It introduces an activation function with the response ability of high-frequency features and integrates the adaptive mechanism of neural tangent kernels to dynamically adjust the weight of the loss function, thereby significantly improving the model’s ability to express and capture high-frequency features. The experimental results show that this method performs well in capturing high-frequency features. Compared with the existing methods such as PINNs, NTK-PINNS, RFF-PINNS and DG-PINNs, AWTS-PINNs has higher accuracy and solution efficiency. In one-dimensional and two-dimensional numerical experiments, AWTS-PINNs achieves the lowest test errors, with an accuracy reaching the order of 10-4.

Key words: PINNs, high-frequency solution, partial differential equations (PDEs), spectral bias, neural tangent kernel

CLC Number:  O241.82
[1] 马亮, 马西奎, 迟明珺, 等.一种适用于嵌入式导电薄层的高阶电磁波混合时域有限差分-时程精细积分法[J].电工技术学报, 2025, 40(5):1333-1343.DOI:10.19595/j.cnki.1000-6753.tces.240355.
[2] 王雯宇, 程茜, 梁淇玮, 等.一维谐振子薛定谔方程含时演化非级数解析解[J].物理与工程, 2024, 34(4):98-109.DOI:10.3969/j.issn.1009-7104.2024.04.016.
[3] 魏健达, 张江敏.有限元方法求解二维薛定谔方程[J].福建师范大学学报(自然科学版), 2022, 38(1):24-33.DOI:10.12046/j.issn.1000-5277.2022.01.004.
[4] 高飞, 郭晓斌, 袁冬芳, 等.改进PINNs方法求解边界层对流占优扩散方程[J].广西师范大学学报(自然科学版), 2023, 41(6):33-50.DOI:10.16088/j.issn.1001-6600.2023032203.
[5] 韩烁, 江林峰, 杨建斌.基于注意力机制PINNs方法求解圣维南方程[J].广西师范大学学报(自然科学版), 2025, 43(4):58-68.DOI:10.16088/j.issn.1001-6600.2024061802.
[6] CAI X H, HUANG C J, TAO-RAN, et al.A mesh-free finite-difference scheme for frequency-domain acoustic wave simulation with topography[J].Applied Geophysics, 2023, 20(4):447-459.DOI:10.1007/s11770-022-0981-z.
[7] JIM DOUGLAS J.Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures[J].SIAM Journal on Numerical Analysis, 1982, 19(5):871-885.DOI:10.2307/2156980.
[8] ZHANG Y.A finite difference method for fractional partial differential equation[J].Applied Mathematics and Computation, 2009, 215(2):524-529.DOI:10.1016/j.amc.2009.05.018.
[9] TAYLOR C A, HUGHES T J R, ZARINS C K.Finite element modeling of blood flow in arteries[J].Computer Methods in Applied Mechanics and Engineering, 1998, 158(1/2):155-196.DOI:10.1016/S0045-7825(98)80008-X.
[10] QIN X Q, MA Y C, ZHANG Y.Two-grid method for characteristics finite-element solution of 2d nonlinear convection-dominated diffusion problem[J].Applied Mathematics and Mechanics, 2005, 26(11):1506-1514.DOI:10.1007/BF03246258.
[11] EYMARD R, GALLOUЁT T, HERBIN R.Finite volume methods[J].Handbook of Numerical Analysis, 2000, 7:713-1018.DOI:10.1016/S1570-8659(00)07005-8.
[12] RAISSI M, PERDIKARIS P, KARNIADAKIS G E.Physics-informed neural networks:a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J].Journal of Computational Physics, 2019, 378:686-707.DOI:10.1016/j.jcp.2018.10.045.
[13] MATTEY R, GHOSH S.A novel sequential method to train physics informed neural networks for Allen Cahn and Cahn Hilliard equations[J].Computer Methods in Applied Mechanics and Engineering, 2022, 390:114474.DOI:10.1016/j.cma.2021.114474.
[14] ZHOU W, XU Y F.Data-guided physics-informed neural networks for solving inverse problems in partial differential equations[EB/OL].(2024-07-15)[2025-05-08].https://doi.org/10.48550/arXiv.2407.10836.DOI:10.48550/arXiv.2407.10836.
[15] WANG S F, YU X L, PERDIKARIS P.When and why PINNs fail to train:a neural tangent kernel perspective[J].Journal of Computational Physics, 2022, 449:110768.DOI:10.1016/j.jcp.2021.110768.
[16] McCLENNY L D, BRAGA-NETO U M.Self-adaptive physics-informed neural networks[J].Journal of Computational Physics, 2023, 474:111722.DOI:10.1016/j.jcp.2022.111722.
[17] WANG S F, TENG Y J, PERDIKARIS P.Understanding and mitigating gradient flow pathologies in physics-informed neural networks[J].SIAM Journal on Scientific Computing, 2021, 43(5):A3055-A3081.DOI:10.1137/20m1318043.
[18] WANG S F, WANG H W, PERDIKARIS P.On the eigenvector bias of Fourier feature networks:From regression to solving multi-scale PDEs with physics-informed neural networks[J].Computer Methods in Applied Mechanics and Engineering, 2021, 384:113938.DOI:10.1016/j.cma.2021.113938.
[19] COOLEY M, SHANKAR V, KIRBY R M, et al.Fourier PINNs:from strong boundary conditions to adaptive Fourier bases[EB/OL].(2024-10-04)[2025-05-08].https://doi.org/10.48550/arXiv.2410.03496.DOI:10.48550/arXiv.2410.03496.
[20] RATHORE P, LEI W, FRANGELLA Z, et al.Challenges in training PINNs:a loss landscape perspective[EB/OL].(2024-06-03)[2025-05-08].https://doi.org/10.48550/arXiv.2402.01868.DOI:10.48550/arXiv.2402.01868.
[1] HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TIAN Sheng, ZHAO Kailong, MIAO Jialin. Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 1 -9 .
[2] XU Xiuhong, ZHANG Jinyan, LU Yuling, LIANG Xiaoping, LIAO Guangfeng, LU Rumei. Research Progress of New C21 Steroids in Medicinal Plants of Asclepiadaceae(Ⅱ)[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 1 -16 .
[3] WANG Xingyu, ZHENG Haonan, LIU Xiao, CUI Shilong, CAI Jinjun. Research Progress on Preparation of Chitosan-based Adsorbents andTheir Applications Towards Adsorptive Removal of Pollutants From Water[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 17 -30 .
[4] TIAN Sheng, FENG Shuaitao, LI Jia. A Framework for Enhanced Vehicle Trajectory Extraction in Urban Road Scenes[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 31 -51 .
[5] LÜ Hui, SI Ke. Photovoltaic Panel Defect Detection Based on Improved RT-DETR[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 52 -64 .
[6] SONG Guanwu, LI Jianjun. Semantic Segmentation of Remote Sensing Images Basedon Self-distillation Edge Refinement[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 65 -76 .
[7] WANG Xuyang, LIANG Yuhang. Multi-scale Asymmetric Attention Transformer for Remote Sensing Image Dehazing[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 77 -89 .
[8] ZHANG Shengwei, CAO Jie. Detection Algorithm of Tiny Defects on Steel Surface Based onFourier Convolution and Difference Perception[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 90 -102 .
[9] WANG Wei, LI Zhiwei, ZHANG Zhaoyang, ZHANG Hong, ZHOU Li, WANG Zhen, HUANG Fang, WANG Can. Carbon Emission Prediction of Substation Based on IFA-BP Neural Network Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 103 -114 .
[10] LUO Yuan, ZHU Wenzhong, WANG Wen, WU Yuhao. A Multi-step Water Quality Prediction Model Based on Improved PatchTST[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 115 -131 .