Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (6): 80-91.doi: 10.16088/j.issn.1001-6600.2024121901

• Intelligence Information Processing • Previous Articles     Next Articles

Lightweight Bearing Defect Detection Algorithm Based on SBSI-YOLO11

WEI Zishu1, CHEN Zhigang1,2*, WANG Yanxue1, Hasitieer Madetihan1   

  1. 1. School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;
    2. Beijing Construction Safety Monitoring Engineering Technology Research Center, Beijing 100044, China
  • Received:2024-12-19 Revised:2025-04-21 Published:2025-11-19

Abstract: In order to solve the problems of low detection accuracy, large model parameters and difficult detection of small targets in the detection of bearing appearance defects in the existing deep learning models, a lightweight detection algorithm SBSI-YOLO11 is proposed. Firstly, the SPD-Conv (space-to-depth convolution) module is introduced into the backbone network to reduce the resolution of the feature map, enhance the feature extraction and reduce the number of parameters of the model. Secondly, the Bidirectional Feature Pyramid Network (BiFPN) and the Attention Mechanism (SGE) are introduced in the Neck part to improve the detection performance of the model for small targets. Finally, the Inner-CIoU loss function is introduced to improve the positioning ability of the model. Experimental results show that compared with the basic model, the SBSI-YOLO11 model shows good comprehensive detection performance, with an mAP of 90.4%, an increase of 2.9 percentage points, a decrease of 11.5% in the amount of parameters, and a decrease of 12.7% in the amount of calculations, which can better meet the detection needs of the current industrial site for bearing appearance defects.

Key words: bearing defect detection, small target detection, YOLO11, lightweight, deep learning

CLC Number:  TP391.41
[1] 宋向金, 赵文祥. 交流电机信号特征分析的滚动轴承故障诊断方法综述[J]. 中国电机工程学报, 2022, 42(4): 1582-1596. DOI: 10.13334/j.0258-8013.pcsee.210760.
[2] 姚景丽, 程光, 万飞, 等. 改进YOLOv8的轻量化轴承缺陷检测算法[J]. 计算机工程与应用, 2024, 60(21): 205-214. DOI: 10.3778/j.issn.1002-8331.2403-0444.
[3] 张驰, 郭媛, 黎明. 人工神经网络模型发展及应用综述[J]. 计算机工程与应用, 2021, 57(11): 57-69. DOI: 10.3778/j.issn.1002-8331.2102-0256.
[4] 卢后洪, 谢罗峰, 朱杨洋, 等. 基于卷积神经网络和模态转换的磁瓦内部缺陷检测方法[J]. 中国测试, 2024, 50(2): 22-27. DOI: 10.11857/j.issn.1674-5124.2022050041.
[5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C] //2014 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2014: 580-587. DOI: 10.1109/CVPR.2014.81.
[6] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031.
[7] 张涛. 基于改进Faster-RCNN的绝缘子缺陷检测模型[J]. 电工技术, 2024(23): 240-243. DOI: 10.19768/j.cnki.dgjs.2024.23.058.
[8] 王子旭, 张红旗, 包曼. 基于Faster-RCNN的绝缘子缺陷检测[J]. 山西电力, 2024(4): 17-21. DOI: 10.3969/j.issn.1671-0320.2024.04.004.
[9] 石炜, 李嘉楠, 张惠丽, 等. 基于Faster R-CNN算法的列车轴承表面缺陷检测研究[J]. 机床与液压, 2021, 49(11): 103-108. DOI: 10.3969/j.issn.1001-3881.2021.11.021.
[10] JIANG P Y, ERGU D J, LIU F Y, et al. A review of yolo algorithm developments[J]. Procedia Computer Science, 2022, 199: 1066-1073. DOI: 10.1016/j.procs.2022.01.135.
[11] QIAN H M, WANG H L, FENG S, et al. FESSD: SSD target detection based on feature fusion and feature enhancement[J]. Journal of Real-Time Image Processing, 2023, 20(1): 2. DOI: 10.1007/s11554-023-01258-y.
[12] 秦振, 李学伟, 刘宏哲. 基于改进SSD的鲁棒小目标检测算法[J]. 东北师大学报(自然科学版), 2023, 55(4):59-66. DOI: 10.16163/j.cnki.dslkxb202209010002.
[13] LI R H, YANG Y, LI N, et al. Transmission line pin detection based on improved SSD[C] //AIIPCC 2022: The Third International Conference on Artificial Intelligence, Information Processing and Cloud Computing. Berlin: VDE Verlag GmbH, 2022: 1-6.
[14] 代培康, 李翰山. 改进YOLOv8n的MEMS缺陷检测方法[J]. 半导体技术, 2025, 50(2): 170-180. DOI: 10.13290/j.cnki.bdtjs.2025.02.009.
[15] 冒浩杰, 巩永旺. 改进YOLOv5s的小目标钢材表面缺陷检测算法[J]. 电子科技, 2025, 38(10): 10-18. DOI:10.16180/j.cnki.issn1007-7820.2025.10.002.
[16] 孙铁强, 刘俊, 宋超, 等. 基于改进YOLOv8n的铝型材表面小目标缺陷检测方法[J]. 现代制造工程, 2024(12): 120-129. DOI: 10.16731/j.cnki.1671-3133.2024.12.016.
[17] 王国国, 龚小玉, 袁发庭. 基于YOLO11s绝缘子缺陷检测的轻量化算法[J/OL]. 重庆工商大学学报(自然科学版): 1-10[2024-12-19]. http://kns.cnki.net/kcms/detail/50.1155.N.20241226.1428.003.html.
[18] SUNKARA R, LUO T. No morestrided convolutions or pooling: a new CNN building block for low-resolution images and small objects[C] //Machine Learning and Knowledge Discovery in Databases: LNAI Volume 13715. Cham: Springer Nature Switzerland, 2023: 443-459. DOI: 10.1007/978-3-031-26409-2_27.
[19] TAN M X, PANG R M, LE Q V.EfficientDet: scalable and efficient object detection[C] //2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 10778-10787. DOI: 10.1109/CVPR42600.2020.01079.
[20] LI Y X, LI X, YANG J. Spatial group-wiseenhance: enhancing semantic feature learning in CNN[C] //Computer Vision–ACCV 2022: LNCS Volume 13845. Cham: Springer Nature Switzerland, 2023: 316-332. DOI: 10.1007/978-3-031-26348-4_19.
[21] ZHANG H, XU C, ZHANG S J. Inner-IoU: more effective intersection over union loss with auxiliary bounding box[EB/OL]. (2023-11-14)[2024-12-19]. https://arxiv.org/abs/2311.02877. DOI: 10.48550/arXiv.2311.02877.
[22] KHANAM R, HUSSAIN M. YOLOv11: an overview of the key architectural enhancements[EB/OL].(2024-10-23)[2024-12-19]. https://arxiv.org/abs/2410.17725v1. DOI: 10.48550/arXiv.2410.17725.
[23] 刘作禹. 基于深度学习的高分遥感影像城市道路提取算法研究[D]. 绵阳: 西南科技大学, 2022. DOI: 10.27415/d.cnki.gxngc.2022.001024.
[24] 高民, 陈高华, 古佳欣, 等. FLM-YOLOv8: 一种轻量级的口罩佩戴检测算法[J]. 计算机工程与应用, 2024, 60(17): 203-215. DOI: 10.3778/j.issn.1002-8331.2402-0226.
[25] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C] //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2019: 658-666. DOI: 10.1109/CVPR.2019.00075.
[26] ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157. DOI: 10.1016/j.neucom.2022.07.042.
[27] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000. DOI: 10.1609/aaai.v34i07.6999.
[28] GEVORGYAN Z.SIoU loss: more powerful learning for bounding box regression[EB/OL]. (2022-05-25)[2024-12-19]. https://arxiv.org/abs/2205.12740v1. DOI: 10.48550/arXiv.2205.12740.
[29] ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C] //2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2024: 16965-16974. DOI: 10.1109/CVPR52733.2024.01605.
[30] ZHAO Y, CHEN B L, LIU B S, et al. GRP-YOLOv5: an improved bearing defect detection algorithm based on YOLOv5[J]. Sensors, 2023, 23(17): 7437. DOI: 10.3390/s23177437.
[1] HAN Huabin, GAO Bingpeng, CAI Xin, SUN Kai. Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 13-28.
[2] LI Zongxiao, ZHANG Jian, LUO Xinyue, ZHAO Yifei, LU Fei. Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 15-23.
[3] SHI Tianyi, NAN Xinyuan, GUO Xiangyu, ZHAO Pu, CAI Xin. Improved ConvNeXt-based Algorithm for Apple Leaf Disease Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 83-96.
[4] SU Chunhai, XIA Haiying. Facial Expression Recognition Based on Noise-Resistant Dual Constraint Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 70-82.
[5] LIU Yuna, MA Shuangbao. Fabric Defect Detection Based on Improved Lightweight YOLOv8n [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 83-94.
[6] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89-100.
[7] HOU Haiyan, TAN Yumei, SONG Shuxiang, XIA Haiying. Head Pose-Robust Facial Expression Recognition [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 126-137.
[8] LU Jiahui, CHEN Qingfeng, WANG Wenguang, YU Qian, HE Naixu, HAN Zongzhao. Multi-scale Attention Learning for Abdomen Multi-organ Image Segmentation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 138-148.
[9] TU Zhirong, LING Haiying, LI Guo, LU Shenglian, QIAN Tingting, CHEN Ming. Lightweight Passion Fruit Detection Method Based on Improved YOLOv7-Tiny [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 79-90.
[10] DU Shuaiwen, JIN Ting. A Deep Hybrid Recommendation Algorithm Based on User Behavior Characteristics [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 91-100.
[11] YI Jianbing, PENG Xin, CAO Feng, LI Jun, XIE Weijia. Research on Point Cloud Registration Algorithm Based on Multi-scale Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 108-120.
[12] XIAO Yuting, LÜ Xiaoqi, GU Yu, LIU Chuanqiang. Classification of Diabetic Retinopathy Based on Split Residual Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 91-101.
[13] ZENG Liang, HU Qian, YANG Tengfei, TAN Weiwei. Substation Personnel Safety Operation Detection Based on L-ConvNeXt Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 102-110.
[14] GAO Fei, GUO Xiaobin, YUAN Dongfang, CAO Fujun. Improved PINNs Method for Solving the Convective Dominant Diffusion Equation with Boundary Layer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 33-50.
[15] JIANG Yibo, LIU Huijia, WU Tian. Research on Identification of Lightning Overvoltage in Transmission Line by Improved Residual Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 74-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiaojuan, LIN Lu, HU Yucong, PAN Lei. Research on the Influence of Land Use Types Surrounding Stations on Subway Passenger Satisfaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 1 -12 .
[2] HAN Huabin, GAO Bingpeng, CAI Xin, SUN Kai. Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 13 -28 .
[3] CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29 -41 .
[4] LI Hao, HE Bing. Droplet Rebound Behavior on Grooves Surface[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 42 -53 .
[5] LING Fu, ZHANG Yonggang, WEN Binghai. Study on Curve Boundary Algorithm of Multiphase Lattice Boltzmann Method Based on Interpolation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 54 -68 .
[6] XIE Sheng, MA Haifei, ZHANG Canlong, WANG Zhiwen, WEI Chunrong. Multi-resolution Feature Grounding for Cross-Modal Person Retrieval[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 69 -79 .
[7] YI Jianbing, HU Yayi, CAO Feng, LI Jun, PENG Xin, CHEN Xin. Design of Lightweight Pulmonary Nodules Detection Network on CT Images with Dynamic Channel Pruning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 92 -106 .
[8] LU Mengxiao,ZHANG Yangchun,ZHANG Xiaofeng. Controlling Value Estimation Biasin Successor Features by Distributional Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 107 -119 .
[9] JIANG Yunlu, LU Huijie, HUANG Xiaowen. Application Research of Penalized Weighted Composite Quantile Regression Method in Fixed Effects Panel Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 120 -127 .
[10] DENG Jinna, LIU Qiumei, CHEN Yiming, YANG Aimin. Numerical Simulation and Stability Analysis of Two Kinds of Viscoelastic Moving Plates[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 128 -139 .