Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (6): 29-41.doi: 10.16088/j.issn.1001-6600.2024090802

• Physical and Electronic Engineering • Previous Articles     Next Articles

Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images

CHEN Jianguo1,2, LIANG Enhua1,2, SONG Xuewei1,2, QIN Zhangrong1,2*   

  1. 1. Key Laboratory of Education Blockchain and Intelligent Technology, Ministry of Education (Guangxi Normal University), Guilin Guangxi 541004, China;
    2. Guangxi Key Laboratory of Multi-Source Information Mining and Security (Guangxi Normal University), Guilin Guangxi 541004, China
  • Received:2024-09-08 Revised:2024-10-30 Published:2025-11-19

Abstract: The flow of aqueous humor in human eyes is the key to maintain daily physiological activities. The systematic study of the dynamic behavior of aqueous humor in human eyes is of great practical significance to understand the pathogenesis of eye diseases and improve the therapeutic effect. In this paper, in order to study the influence of personalized geometric features of real human eye tissue on aqueous humor dynamics, three-dimensional geometric reconstruction and numerical simulation of real human eye tissue are carried out based on optical coherence tomography and lattice Boltzmann method, and some meaningful results are obtained. The angle of the anterior chamber is closely related to the flow pattern of aqueous humor. The decrease of the angle of the anterior chamber then leads to the change of flow pattern and the decrease of flow velocity. The maximum flow rate of aqueous humor is reduced from 9.65×10-5 m/s to 3.10×10-5 m/s after the current room angle is reduced from 41° to 9°. Corneal depression does not change the flow pattern of aqueous humor, but reduces the flow speed. The maximum flow velocity of aqueous humor decreases from 5.93×10-5 m/s to 1.45×10-5 m/s when the depression distance increases from 0 mm to 0.7 mm. Ectopia of pupil results in an asymmetric distribution of aqueous humor flow in the anterior chamber, and the flow pattern becomes more complex with the decrease of the anterior chamber angle.

Key words: lattice Boltzmann method, aqueous humor dynamics, three-dimensional reconstruction, numerical simulation, anterior segment

CLC Number:  R318;TP391.41
[1] CARREON T, VAN DER MERWE E, FELLMAN R L, et al. Aqueous outflow-A continuum from trabecular meshwork to episcleral veins[J]. Progress in Retinal and Eye Research, 2017, 57: 108-133. DOI: 10.1016/j.preteyeres.2016.12.004.
[2] 钱秀清, 宋红芳, 刘志成. 青光眼生物力学研究进展[J]. 科技导报, 2018, 36(13): 30-38. DOI: 10.3981/j.issn.1000-7857.2018.13.004.
[3] TORIS C B, GAGRANI M, GHATE D. Current methods and new approaches to assess aqueous humor dynamics[J]. Expert Review of Ophthalmology, 2021, 16(3): 139-160. DOI: 10.1080/17469899.2021.1902308.
[4] CORONEO M T, GRATEROL-NISI G, MAVER E, et al. Aqueous humor circulation in the era of minimally invasive surgery for glaucoma[J]. Annals of Biomedical Engineering, 2024, 52(4): 898-907. DOI: 10.1007/s10439-023-03427-3.
[5] BASSON N, ALIMAHOMED F, GEOGHEGAN P H, et al. An aqueous humour fluid dynamic study for normal and glaucomatous eye conditions[C] //2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Piscataway, NJ: IEEE, 2022: 3963-3966. DOI: 10.1109/EMBC48229.2022.9871009.
[6] CANNING C R, GREANEY M J, DEWYNNE J N, et al. Fluid flow in the anterior chamber of a human eye[J]. IMA Journal of Mathematics Applied in Medicine and Biology, 2002, 19(1): 31-60.
[7] FITT A D, GONZALEZ G. Fluid mechanics of the human eye: aqueous humour flow in the anterior chamber[J]. Bulletin of Mathematical Biology, 2006, 68(1): 53-71. DOI: 10.1007/s11538-005-9015-2.
[8] OOI E H, NG E Y. Simulation of aqueous humor hydrodynamics in human eye heat transfer[J]. Computers in Biology and Medicine, 2008, 38(2): 252-262. DOI: 10.1016/j.compbiomed.2007.10.007.
[9] KARAMPATZAKIS A, SAMARAS T. Numerical model of heat transfer in the human eye with consideration of fluid dynamics of the aqueous humour[J]. Physics in Medicine and Biology, 2010, 55(19): 5653-5665. DOI: 10.1088/0031-9155/55/19/003.
[10] KUMAR S, ACHARYA S, BEUERMAN R, et al. Numerical solution of ocular fluid dynamics in a rabbit eye: parametric effects[J]. Annals of Biomedical Engineering, 2006, 34(3): 530-544. DOI: 10.1007/s10439-005-9048-6.
[11] YAN Y W, SHI H H, ZHAO Y L, et al. Correlation study of biomechanical changes between diabetic eye disease and glaucoma using finite element model of human eye with different iris-lens channel distances[J]. Medical Engineering & Physics, 2022, 109: 103910. DOI: 10.1016/j.medengphy.2022.103910.
[12] AMINI R, BAROCAS V H. Reverse pupillary block slows iris contour recovery from corneoscleral indentation[J]. Journal of Biomechanical Engineering, 2010, 132(7): 071010. DOI: 10.1115/1.4001256.
[13] HEYS J J, BAROCAS V H, TARAVELLA M J. Modeling passive mechanical interaction between aqueous humor and iris[J]. Journal of Biomechanical Engineering, 2001, 123(6): 540-547. DOI: 10.1115/1.1411972.
[14] WANG W J, QIAN X Q, SONG H F, et al. Fluid and structure coupling analysis of the interaction between aqueous humor and iris[J]. Biomedical Engineering Online, 2016, 15(S2): 133. DOI: 10.1186/s12938-016-0261-3.
[15] ZUHAILA I, JIANN L Y, SHARIDAN S, et al. Aqueous humour dynamics in anterior chamber under influence of Cornea indentation[J]. Journal of Physics: Conference Series, 2017, 822: 012023. DOI: 10.1088/1742-6596/822/1/012023.
[16] 陈伟, 张向东, 余涵, 等. 虹膜膨隆对房水流动影响的数值模拟分析[J]. 眼科新进展, 2017, 37(1): 72-76. DOI: 10.13389/j.cnki.rao.2017.0020.
[17] TAMM E R, BRAUNGER B M, FUCHSHOFER R. Intraocular pressure and the mechanisms involved in resistance of the aqueous humor flow in the trabecular meshwork outflow pathways[J]. Progress in Molecular Biology and Translational Science, 2015, 134: 301-314. DOI: 10.1016/bs.pmbts.2015.06.007.
[18] MERCHANT B M, HEYS J J. Effects of variable permeability on aqueous humor outflow[J]. Applied Mathematics and Computation, 2008, 196(1): 371-380. DOI: 10.1016/j.amc.2007.06.008.
[19] LIN C W, YUAN F. Numerical simulations of ethacrynic acid transport from precorneal region to trabecular meshwork[J]. Annals of Biomedical Engineering, 2010, 38(3): 935-944. DOI: 10.1007/s10439-010-9947-z.
[20] CHEN H, ZHANG F, HUANG Y K, et al. Numerical investigation of topical drug transport in the anterior human eye[J]. International Journal of Heat and Mass Transfer, 2015, 85: 356-366. DOI: 10.1016/j.ijheatmasstransfer.2015.01.142.
[21] FERREIRA J A, DE OLIVEIRA P, DA SILVA P M, et al. Numerical simulation of aqueous humor flow: from healthy to pathologic situations[J]. Applied Mathematics and Computation, 2014, 226: 777-792. DOI: 10.1016/j.amc.2013.10.070.
[22] FERNÁNDEZ-VIGO J I, MARCOS A C, AGUJETAS R, et al. Computational simulation of aqueous humour dynamics in the presence of a posterior-chamber versus iris-fixed phakic intraocular lens[J]. PLoS One, 2018, 13(8): e0202128. DOI: 10.1371/journal.pone.0202128.
[23] 高乐, 尹海国, 蒋慧莉, 等. 人工晶体开孔孔径对晶体变形及前房内流场影响的数值模拟研究[J]. 医用生物力学, 2023, 38(4): 690-696. DOI: 10.16156/j.1004-7220.2023.04.008.
[24] QIN Z R, MENG L J, YANG F, et al. Aqueous humor dynamics in human eye: a lattice Boltzmann study[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 5006-5028. DOI: 10.3934/mbe.2021255.
[25] HUANG G, YE Q L, TANG H, et al. A GPU accelerated study of aqueous humor dynamics in human eyes using the lattice Boltzmann method[J]. Mathematical Biosciences and Engineering, 2023, 20(5): 8476-8497. DOI: 10.3934/mbe.2023372.
[26] SU L, JU Y, LIU X R. Quantitative modeling and simulation of anterior chamber in OCT images[C] //2010 IEEE Fifth International Conference on Bio-Inspired Computing: the ories and Applications (BIC-TA). Piscataway, NJ: IEEE, 2010: 1314-1318. DOI: 10.1109/BICTA.2010.5645072.
[27] TANG H, QIN Z R, WEN B H. Geometric model and numerical study of aqueous humor hydrodynamics in the human eye[J]. Computational and Mathematical Methods in Medicine, 2022, 2022(1): 4756728. DOI: 10.1155/2022/4756728.
[28] 管羿鸣, 季婷婷, 杨鑫宇, 等. 液滴在化学异构表面上侧向弹跳的计算机模拟研究[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 90-100. DOI: 10.16088/j.issn.1001-6600.2020031201.
[29] 赵金想, 陈燕雁, 覃章荣, 等. 一种基于化学势LBM多相流模型的改进方法[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 87-95. DOI: 10.16088/j.issn.1001-6600.2020.02.010.
[30] 李若桐, 钟兴国, 刘起霖, 等. 基于格子Boltzmann方法的自由能密度模型[J]. 广西师范大学学报(自然科学版), 2024,42(4): 90-99. DOI: 10.16088/j.issn.1001-6600.2023080803.
[31] 杨勇, 陈丽萍, 龚延风, 等. 基于多尺度方法研究微生物生长对多孔介质渗透率的影响[J]. 环境工程, 2023, 41(4): 49-54, 153. DOI: 10.13205/j.hjgc.202304007.
[32] 王俊权, 居隆, 陈松泽, 等. 微孔中反应流体黏性指进混合过程的数值研究[J]. 工程热物理学报, 2023, 44(2): 540-549.
[33] SCHMITT J M. Optical coherence tomography (OCT): a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4): 1205-1215. DOI: 10.1109/2944.796348.
[34] HUANG Y, WANG W X, LI W S. Anisotropic filter based modified canny algorithm[C] //Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007). Piscataway, NJ: IEEE, 2007: 736-740. DOI: 10.1109/FSKD.2007.175.
[35] GENG X, CHEN K, HU X G. An improved Canny edge detection algorithm for color image[C] //IEEE 10th International Conference on Industrial Informatics. Piscataway, NJ: IEEE, 2012: 113-117. DOI: 10.1109/INDIN.2012.6301061.
[36] TRIPATHI R C, TRIPATHI B J. Anatomy of the human eye, orbit, and adnexa[M] //The Eye. Amsterdam: Elsevier, 1984: 1-268. DOI: 10.1016/b978-0-12-206901-7.50006-3.
[37] 洪佳旭,刘笑宇,樊瑜波,等.基于光学相干衍射技术的活体人眼前节图像三维重建研究[C] //International Science and Engineering Center, Hong Kong,Wuhan Institute of Technology, China.Proceedings of 2010 First International Conference on Cellular,Molecular Biology, Biophysics and Bioengineering(Volume 4).复旦大学附属眼耳鼻喉科医院眼科,2010:511-518.
[38] 姚南生, 屈景怡. 一种双向层间轮廓线线性插值方法[J]. 微机发展, 2004, 14(4): 28-30. DOI: 10.3969/j.issn.1673-629X.2004.04.009.
[39] MACKNIGHT A D, MCLAUGHLIN C W, PEART D, et al. Formation of the aqueous humor[J]. Clinical and Experimental Pharmacology and Physiology, 2000, 27(1/2): 100-106. DOI: 10.1046/j.1440-1681.2000.03208.x.
[40] MARTÍNEZ SÁNCHEZ G J, ESCOBAR DEL POZO C, ROCHA MEDINA J A, et al. Numerical simulation of the aqueous humor flow in the eye drainage system; a healthy and pathological condition comparison[J]. Medical Engineering & Physics, 2020, 83: 82-92. DOI: 10.1016/j.medengphy.2020.07.010.
[41] GUO Z L, ZHAO T S. A lattice Boltzmann model for convection heat transfer in porous media[J]. Numerical Heat Transfer, Part B: Fundamentals, 2005, 47(2): 157-177. DOI: 10.1080/10407790590883405.
[42] GUO Z L, ZHENG C G, SHI B C. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method[J]. Chinese Physics, 2002, 11(4): 366-374. DOI: 10.1088/1009-1963/11/4/310.
[43] GUO Z L, ZHENG C G, SHI B C. Discrete lattice effects on the forcing term in the lattice Boltzmann method[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2002, 65(4 Pt 2B): 046308. DOI: 10.1103/PhysRevE.65.046308.
[44] GOEL M, PICCIANI R G, LEE R K, et al. Aqueous humor dynamics: a review[J]. The Open Ophthalmology Journal, 2010, 4: 52-59. DOI: 10.2174/1874364101004010052.
[45] ZHAO Y B, CHEN B, LI D. Optimization of surgical protocol for laser iridotomy based on the numerical simulation of aqueous flow[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 7405-7420. DOI: 10.3934/mbe.2019370.
[46] BERGMAN T L, DEWITT D P, INCROPERA F P, et al. Fundamentals of heat and mass transfer[M]. 7th ed. New York: John Wiley & Sons, 2011.
[47] HEYS J J, BAROCAS V H. A boussinesq model of natural convection in the human eye and the formation of Krukenberg’s spindle[J]. Annals of Biomedical Engineering, 2002, 30(3): 392-401. DOI: 10.1114/1.1477447.
[48] SWARBRICK H A, WONG G, O’LEARY D J. Corneal response to orthokeratology[J]. Optometry and Vision Science, 1998, 75(11): 791-799. DOI: 10.1097/00006324-199811000-00019.
[1] LI Hao, HE Bing. Droplet Rebound Behavior on Grooves Surface [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 42-53.
[2] LING Fu, ZHANG Yonggang, WEN Binghai. Study on Curve Boundary Algorithm of Multiphase Lattice Boltzmann Method Based on Interpolation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 54-68.
[3] DENG Jinna, LIU Qiumei, CHEN Yiming, YANG Aimin. Numerical Simulation and Stability Analysis of Two Kinds of Viscoelastic Moving Plates [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 128-139.
[4] LI Ruotong, ZHONG Xingguo, LIU Qilin, WEN Binghai. Free-Energy-Density Model Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 90-99.
[5] ZHANG Wanjing, LIN Zhigui. Turing Instability of a Parasite-host Model on Growing Domains [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 132-139.
[6] SHAO Yufu, JI Tingting, YAO Yichen, WEN Binghai. Research on Measurement Algorithm of Contact Angle on Curved Surface Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 44-53.
[7] GUAN Yiming, JI Tingting, YANG Xinyu, WEN Binghai. Computer Simulation of Droplets Bounce Laterally on Chemical Isomerism Surfaces [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 90-100.
[8] HUANG Chunxian, ZHOU Xiaoliang. Bifurcation Analysis of an SIRS Epidemic Model with Graded Cure and Incomplete Recovery Rates [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 74-81.
[9] LING Fengru, ZHANG Chaoying, CHEN Yanyan, QIN Zhangrong. A Unified Boundary Condition Based on the Halfway Bounce-back Scheme in Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 70-78.
[10] ZHANG Lisheng, ZHANG Zhiyong, MA Kaihua, LI Guofang. Studying Oscillations in Convection Cahn-Hilliard System with Improved Lattice Boltzmann Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 15-26.
[11] QIU Wen, YE Yong, ZHOU Sihao, WEN Binghai. Contact Angle in Micro Droplet Deformation Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 27-37.
[12] HUANG Bingfang,WEN Binghai,QIU Wen,ZHAO Wanling,CHEN Yanyan. Research on Real Time Measurement of Contact Angle Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 34-43.
[13] CHEN Chunyan, XU Zhipeng, KUANG Hua. Modeling and Stability Analysis of Traffic Flow Car-following Modelwith Continuous Memory Effect [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 14-21.
[14] LI Yi-chun, DONG De-xin, WANG Yi-bing. Transport Time Scale in the Beilun River Estuary and Its Adjacent Area [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 56-63.
[15] QIN Zhang-rong, ZHANG Chao-ying, QIU Bin, LI Yuan-yuan, MO Liu-liu. Implementation of the Acceleration Simulation with Lattice Boltzmann Method Based on CUDA [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 18-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiaojuan, LIN Lu, HU Yucong, PAN Lei. Research on the Influence of Land Use Types Surrounding Stations on Subway Passenger Satisfaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 1 -12 .
[2] HAN Huabin, GAO Bingpeng, CAI Xin, SUN Kai. Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 13 -28 .
[3] LI Hao, HE Bing. Droplet Rebound Behavior on Grooves Surface[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 42 -53 .
[4] LING Fu, ZHANG Yonggang, WEN Binghai. Study on Curve Boundary Algorithm of Multiphase Lattice Boltzmann Method Based on Interpolation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 54 -68 .
[5] XIE Sheng, MA Haifei, ZHANG Canlong, WANG Zhiwen, WEI Chunrong. Multi-resolution Feature Grounding for Cross-Modal Person Retrieval[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 69 -79 .
[6] WEI Zishu, CHEN Zhigang, WANG Yanxue, Hasitieer Madetihan. Lightweight Bearing Defect Detection Algorithm Based on SBSI-YOLO11[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 80 -91 .
[7] YI Jianbing, HU Yayi, CAO Feng, LI Jun, PENG Xin, CHEN Xin. Design of Lightweight Pulmonary Nodules Detection Network on CT Images with Dynamic Channel Pruning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 92 -106 .
[8] LU Mengxiao,ZHANG Yangchun,ZHANG Xiaofeng. Controlling Value Estimation Biasin Successor Features by Distributional Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 107 -119 .
[9] JIANG Yunlu, LU Huijie, HUANG Xiaowen. Application Research of Penalized Weighted Composite Quantile Regression Method in Fixed Effects Panel Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 120 -127 .
[10] DENG Jinna, LIU Qiumei, CHEN Yiming, YANG Aimin. Numerical Simulation and Stability Analysis of Two Kinds of Viscoelastic Moving Plates[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 128 -139 .