Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (6): 13-28.doi: 10.16088/j.issn.1001-6600.2024101701

• Physical and Electronic Engineering • Previous Articles     Next Articles

Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model

HAN Huabin, GAO Bingpeng*, CAI Xin, SUN Kai   

  1. School of Electrical Engineering, Xinjiang University, Urumqi Xinjiang 830017, China
  • Received:2024-10-17 Revised:2025-01-09 Published:2025-11-19

Abstract: To address the shortcomings in time-series analysis and data imbalance research for operational monitoring data of wind turbine blades, this paper proposes a fault detection method for blade icing based on feature engineering and a HO-CNN-BiLSTM-Transformer framework. Firstly, feature engineering is employed by using the blade icing mechanism model to construct mechanism variables for blade icing. Secondly, a CNN-BiLSTM-Transformer detection model is developed to explore the temporal information in supervisory control and data acquisition (SCADA) system data. Finally, the Hippopotamus optimization (HO) algorithm is utilized to optimize the model’s hyperparameters, enhancing its diagnostic performance and generalization ability. Experimental results demonstrate that this detection method achieves precision, recall, and F1 scores of 0.983 8, 0.990 2, and 0.987 0, respectively, outperforming other comparative models and optimization algorithms. This method provides valuable insights for optimizing maintenance strategies in wind farms, ensuring safe and efficient operation of wind turbines under cold conditions.

Key words: wind turbines, blade icing, fault diagnosis, feature engineering, imbalanced data, hippopotamus optimization algorithm, deep learning

CLC Number:  TM315;TP18
[1] ROGA S, BARDHAN S, KUMAR Y, et al. Recent technology and challenges of wind energy generation: a review[J]. Sustainable Energy Technologies and Assessments, 2022, 52: 102239. DOI: 10.1016/j.seta.2022.102239.
[2] 全球发展与碳中和课题组. 引领全球气候治理和推进能源转型的战略思考[J]. 国际经济评论, 2024(5): 39-54, 5.
[3] GAO L Y, DASARI T, HONG J R. Wind farm icing loss forecast pertinent to winter extremes[J]. Sustainable Energy Technologies and Assessments, 2022, 50: 101872. DOI: 10.1016/j.seta.2021.101872.
[4] 杜文杰, 关梦茜, 江源, 等. 新疆风力发电减碳效益全生命周期评估[J]. 生态学报, 2024, 44(8): 3293-3302. DOI: 10.20103/j.stxb.202306301400.
[5] WEI K X, YANG Y, ZUO H Y, et al. A review on ice detection technology and ice elimination technology for wind turbine[J]. Wind Energy, 2020, 23(3): 433-457. DOI: 10.1002/we.2427.
[6] KIM D G, UMESH S, SONG M,et al. A fiber-optic ice detection system for large-scale wind turbine blades[EB/OL]. (2017-09-06)[2024-12-18]. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10374/2273664/A-fiber-optic-ice-detection-system-for-large-scale-wind/10.1117/12.2273664.short. DOI: 10.1117/12.2273664.
[7] GÓMEZ MUÑOZ C Q, GARCÍA MÁRQUEZ F P, SÁNCHEZ TOMÁS J M. Ice detection using thermal infrared radiometry on wind turbine blades[J]. Measurement, 2016, 93: 157-163. DOI: 10.1016/j.measurement.2016.06.064.
[8] TAUTZ-WEINERT J, WATSON S J. Using SCADA data for wind turbine condition monitoring-a review[J]. IET Renewable Power Generation, 2017, 11(4): 382-394. DOI: 10.1049/iet-rpg.2016.0248.
[9] ZHANG L J, LIU K, WANG Y F, et al. Ice detection model of wind turbine blades based on random forest classifier[J]. Energies, 2018, 11(10): 2548. DOI: 10.3390/en11102548.
[10] 海涛, 范恒, 王楷杰, 等. 基于PSO-SVM算法的风电机组结冰故障诊断[J]. 智慧电力, 2021, 49(4): 1-6, 74. DOI: 10.3969/j.issn.1673-7598.2021.04.002.
[11] TAO T, LIU Y Q, QIAO Y H, et al. Wind turbine blade icing diagnosis using hybrid features and Stacked-XGBoost algorithm[J]. Renewable Energy, 2021, 180: 1004-1013. DOI: 10.1016/j.renene.2021.09.008.
[12] YANG X Y, HUANG X X, GAO X X, et al. Icing diagnosis model for wind turbine blade based on feature optimization and 1D-convolutional neural network[J]. Journal of Renewable and Sustainable Energy, 2022, 14(3): 033303. DOI: 10.1063/5.0078364.
[13] TAO C, TAO T, HE S K, et al. Wind turbine blade icing diagnosis using B-SMOTE-Bi-GRU and RFE combined with icing mechanism[J]. Renewable Energy, 2024, 221: 119741. DOI: 10.1016/j.renene.2023.119741.
[14] 刘俊, 姚邹静, 赵春晖. 基于慢特征分析的风机多模型叶片结冰检测[J]. 控制工程, 2020, 27(11): 1987-1994. DOI: 10.14107/j.cnki.kzgc.20190349.
[15] LI M L, HE X. An accurate detection method for turbine icing issues using LSTM network[J]. IOP Conference Series: Earth and Environmental Science, 2019, 237: 032109. DOI: 10.1088/1755-1315/237/3/032109.
[16] WANG L, HE Y G, ZHOU Y Z, et al. A novel approach to wind turbine blade icing detection with limited sensor data via spatiotemporal attention Siamese network[J]. IEEE Transactions on Industrial Informatics, 2024, 20(6): 8993-9005. DOI: 10.1109/TII.2024.3378775.
[17] YUE R X, JIANG G Q, JIN X H, et al. Spatio-temporal feature alignment transfer learning for cross-turbine blade icing detection of wind turbines[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 3507717. DOI: 10.1109/TIM.2024.3350147.
[18] 薛建凯. 一种新型的群智能优化技术的研究与应用: 麻雀搜索算法[D]. 上海: 东华大学, 2020. DOI: 10.27012/d.cnki.gdhuu.2020.000178.
[19] KENNEDY J, EBERHART R. Particle swarm optimization[C] //Proceedings of ICNN′95-International Conference on Neural Networks. Piscataway, NJ: IEEE, 2002: 1942-1948. DOI: 10.1109/ICNN.1995.488968.
[20] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. DOI: 10.1016/j.advengsoft.2013.12.007.
[21] ABDOLLAHZADEH B, GHAREHCHOPOGH F S, MIRJALILI S. African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems[J]. Computers & Industrial Engineering, 2021, 158: 107408. DOI: 10.1016/j.cie.2021.107408.
[22] 蒋丽英, 高铭悦, 李贺. 基于SSA-VMD和SDP的双通道CNN轴承故障识别方法[J]. 机电工程, 2025, 42(2): 257-266.
[23] GUO J C, SONG X W, TANG S F, et al. Fault diagnosis of wind turbine blade icing based on feature engineering and the PSO-ConvLSTM-transformer[J]. Ocean Engineering, 2024, 302: 117726. DOI: 10.1016/j.oceaneng.2024.117726.
[24] 栾孝驰, 徐石, 沙云东, 等. 基于GWO-NLM与CEEMDAN的滚动轴承故障诊断方法[J]. 航空动力学报, 2023, 38(5): 1185-1197. DOI: 10.13224/j.cnki.jasp.20210547.
[25] 陈闻鹤, 程龙生, 常志朋, 等. 改进BiLSTM-GRU-DMD的风机叶片结冰故障检测与状态评估模型[J]. 工业工程与管理, 2023, 28(5): 108-118. DOI: 10.19495/j.cnki.1007-5429.2023.05.012.
[26] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. DOI: 10.1162/neco.1997.9.8.173.
[27] VASWANI A, SHAZEER N, PARMAR N, et al. Attention Is All You Need[EB/OL]. (2017-07-12-06)[2024-12-18]. https://arxiv.org/abs/1706.03762.
[28] LIN T Y, GOYAL P, GIRSHICK R et al. Focal Loss for Dense Object Detection[EB/OL].(2017-08-07)[2024-12-18]. https://arxiv.org/abs/1708.02002.
[29] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357. DOI: 10.1613/jair.953.
[30] AMIRI M H, MEHRABI HASHJIN N, MONTAZERI M, et al. Hippopotamus optimization algorithm: a novel nature-inspired optimization algorithm[J]. Scientific Reports, 2024, 14(1): 5032. DOI: 10.1038/s41598-024-54910-3.
[31] MAKKONEN L. Models for the growth of rime, glaze, icicles and wet snow on structures[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2000, 358(1776): 2913-2939. DOI: 10.1098/rsta.2000.0690.
[32] RAHIMI E, RABIEE A, AGHAEI J, et al. On the management of wind power intermittency[J]. Renewable and Sustainable Energy Reviews, 2013, 28: 643-653. DOI: 10.1016/j.rser.2013.08.034.
[1] WEI Zishu, CHEN Zhigang, WANG Yanxue, Hasitieer Madetihan. Lightweight Bearing Defect Detection Algorithm Based on SBSI-YOLO11 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 80-91.
[2] LI Zongxiao, ZHANG Jian, LUO Xinyue, ZHAO Yifei, LU Fei. Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 15-23.
[3] SHI Tianyi, NAN Xinyuan, GUO Xiangyu, ZHAO Pu, CAI Xin. Improved ConvNeXt-based Algorithm for Apple Leaf Disease Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 83-96.
[4] SU Chunhai, XIA Haiying. Facial Expression Recognition Based on Noise-Resistant Dual Constraint Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 70-82.
[5] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89-100.
[6] HOU Haiyan, TAN Yumei, SONG Shuxiang, XIA Haiying. Head Pose-Robust Facial Expression Recognition [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 126-137.
[7] LU Jiahui, CHEN Qingfeng, WANG Wenguang, YU Qian, HE Naixu, HAN Zongzhao. Multi-scale Attention Learning for Abdomen Multi-organ Image Segmentation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 138-148.
[8] DU Shuaiwen, JIN Ting. A Deep Hybrid Recommendation Algorithm Based on User Behavior Characteristics [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 91-100.
[9] YI Jianbing, PENG Xin, CAO Feng, LI Jun, XIE Weijia. Research on Point Cloud Registration Algorithm Based on Multi-scale Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 108-120.
[10] XIAO Yuting, LÜ Xiaoqi, GU Yu, LIU Chuanqiang. Classification of Diabetic Retinopathy Based on Split Residual Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 91-101.
[11] GAO Fei, GUO Xiaobin, YUAN Dongfang, CAO Fujun. Improved PINNs Method for Solving the Convective Dominant Diffusion Equation with Boundary Layer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 33-50.
[12] JIANG Yibo, LIU Huijia, WU Tian. Research on Identification of Lightning Overvoltage in Transmission Line by Improved Residual Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 74-83.
[13] TANG Houqing, XIN Binbin, ZHU Hongyu, YI Jiawei, ZHANG Dongdong, WU Xinzhang, SHUANG Feng. Rolling Bearing Fault Diagnosis Based on Multi-scale Attentional Inverted Residual Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 109-122.
[14] TIAN Sheng, ZHANG Jinming, LI Chengwei, LI Jia. Fault Prediction of Electric Vehicle Based on BS_Bagging-cLightGBM Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 9-19.
[15] YANG Shuozhen, ZHANG Long, WANG Jianhua, ZHANG Hengyuan. Review of Sound Event Detection [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 1-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiaojuan, LIN Lu, HU Yucong, PAN Lei. Research on the Influence of Land Use Types Surrounding Stations on Subway Passenger Satisfaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 1 -12 .
[2] CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29 -41 .
[3] LI Hao, HE Bing. Droplet Rebound Behavior on Grooves Surface[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 42 -53 .
[4] LING Fu, ZHANG Yonggang, WEN Binghai. Study on Curve Boundary Algorithm of Multiphase Lattice Boltzmann Method Based on Interpolation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 54 -68 .
[5] XIE Sheng, MA Haifei, ZHANG Canlong, WANG Zhiwen, WEI Chunrong. Multi-resolution Feature Grounding for Cross-Modal Person Retrieval[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 69 -79 .
[6] WEI Zishu, CHEN Zhigang, WANG Yanxue, Hasitieer Madetihan. Lightweight Bearing Defect Detection Algorithm Based on SBSI-YOLO11[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 80 -91 .
[7] YI Jianbing, HU Yayi, CAO Feng, LI Jun, PENG Xin, CHEN Xin. Design of Lightweight Pulmonary Nodules Detection Network on CT Images with Dynamic Channel Pruning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 92 -106 .
[8] LU Mengxiao,ZHANG Yangchun,ZHANG Xiaofeng. Controlling Value Estimation Biasin Successor Features by Distributional Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 107 -119 .
[9] JIANG Yunlu, LU Huijie, HUANG Xiaowen. Application Research of Penalized Weighted Composite Quantile Regression Method in Fixed Effects Panel Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 120 -127 .
[10] DENG Jinna, LIU Qiumei, CHEN Yiming, YANG Aimin. Numerical Simulation and Stability Analysis of Two Kinds of Viscoelastic Moving Plates[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 128 -139 .