Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (6): 13-28.doi: 10.16088/j.issn.1001-6600.2024101701
• Physical and Electronic Engineering • Previous Articles Next Articles
HAN Huabin, GAO Bingpeng*, CAI Xin, SUN Kai
| [1] ROGA S, BARDHAN S, KUMAR Y, et al. Recent technology and challenges of wind energy generation: a review[J]. Sustainable Energy Technologies and Assessments, 2022, 52: 102239. DOI: 10.1016/j.seta.2022.102239. [2] 全球发展与碳中和课题组. 引领全球气候治理和推进能源转型的战略思考[J]. 国际经济评论, 2024(5): 39-54, 5. [3] GAO L Y, DASARI T, HONG J R. Wind farm icing loss forecast pertinent to winter extremes[J]. Sustainable Energy Technologies and Assessments, 2022, 50: 101872. DOI: 10.1016/j.seta.2021.101872. [4] 杜文杰, 关梦茜, 江源, 等. 新疆风力发电减碳效益全生命周期评估[J]. 生态学报, 2024, 44(8): 3293-3302. DOI: 10.20103/j.stxb.202306301400. [5] WEI K X, YANG Y, ZUO H Y, et al. A review on ice detection technology and ice elimination technology for wind turbine[J]. Wind Energy, 2020, 23(3): 433-457. DOI: 10.1002/we.2427. [6] KIM D G, UMESH S, SONG M,et al. A fiber-optic ice detection system for large-scale wind turbine blades[EB/OL]. (2017-09-06)[2024-12-18]. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10374/2273664/A-fiber-optic-ice-detection-system-for-large-scale-wind/10.1117/12.2273664.short. DOI: 10.1117/12.2273664. [7] GÓMEZ MUÑOZ C Q, GARCÍA MÁRQUEZ F P, SÁNCHEZ TOMÁS J M. Ice detection using thermal infrared radiometry on wind turbine blades[J]. Measurement, 2016, 93: 157-163. DOI: 10.1016/j.measurement.2016.06.064. [8] TAUTZ-WEINERT J, WATSON S J. Using SCADA data for wind turbine condition monitoring-a review[J]. IET Renewable Power Generation, 2017, 11(4): 382-394. DOI: 10.1049/iet-rpg.2016.0248. [9] ZHANG L J, LIU K, WANG Y F, et al. Ice detection model of wind turbine blades based on random forest classifier[J]. Energies, 2018, 11(10): 2548. DOI: 10.3390/en11102548. [10] 海涛, 范恒, 王楷杰, 等. 基于PSO-SVM算法的风电机组结冰故障诊断[J]. 智慧电力, 2021, 49(4): 1-6, 74. DOI: 10.3969/j.issn.1673-7598.2021.04.002. [11] TAO T, LIU Y Q, QIAO Y H, et al. Wind turbine blade icing diagnosis using hybrid features and Stacked-XGBoost algorithm[J]. Renewable Energy, 2021, 180: 1004-1013. DOI: 10.1016/j.renene.2021.09.008. [12] YANG X Y, HUANG X X, GAO X X, et al. Icing diagnosis model for wind turbine blade based on feature optimization and 1D-convolutional neural network[J]. Journal of Renewable and Sustainable Energy, 2022, 14(3): 033303. DOI: 10.1063/5.0078364. [13] TAO C, TAO T, HE S K, et al. Wind turbine blade icing diagnosis using B-SMOTE-Bi-GRU and RFE combined with icing mechanism[J]. Renewable Energy, 2024, 221: 119741. DOI: 10.1016/j.renene.2023.119741. [14] 刘俊, 姚邹静, 赵春晖. 基于慢特征分析的风机多模型叶片结冰检测[J]. 控制工程, 2020, 27(11): 1987-1994. DOI: 10.14107/j.cnki.kzgc.20190349. [15] LI M L, HE X. An accurate detection method for turbine icing issues using LSTM network[J]. IOP Conference Series: Earth and Environmental Science, 2019, 237: 032109. DOI: 10.1088/1755-1315/237/3/032109. [16] WANG L, HE Y G, ZHOU Y Z, et al. A novel approach to wind turbine blade icing detection with limited sensor data via spatiotemporal attention Siamese network[J]. IEEE Transactions on Industrial Informatics, 2024, 20(6): 8993-9005. DOI: 10.1109/TII.2024.3378775. [17] YUE R X, JIANG G Q, JIN X H, et al. Spatio-temporal feature alignment transfer learning for cross-turbine blade icing detection of wind turbines[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 3507717. DOI: 10.1109/TIM.2024.3350147. [18] 薛建凯. 一种新型的群智能优化技术的研究与应用: 麻雀搜索算法[D]. 上海: 东华大学, 2020. DOI: 10.27012/d.cnki.gdhuu.2020.000178. [19] KENNEDY J, EBERHART R. Particle swarm optimization[C] //Proceedings of ICNN′95-International Conference on Neural Networks. Piscataway, NJ: IEEE, 2002: 1942-1948. DOI: 10.1109/ICNN.1995.488968. [20] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. DOI: 10.1016/j.advengsoft.2013.12.007. [21] ABDOLLAHZADEH B, GHAREHCHOPOGH F S, MIRJALILI S. African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems[J]. Computers & Industrial Engineering, 2021, 158: 107408. DOI: 10.1016/j.cie.2021.107408. [22] 蒋丽英, 高铭悦, 李贺. 基于SSA-VMD和SDP的双通道CNN轴承故障识别方法[J]. 机电工程, 2025, 42(2): 257-266. [23] GUO J C, SONG X W, TANG S F, et al. Fault diagnosis of wind turbine blade icing based on feature engineering and the PSO-ConvLSTM-transformer[J]. Ocean Engineering, 2024, 302: 117726. DOI: 10.1016/j.oceaneng.2024.117726. [24] 栾孝驰, 徐石, 沙云东, 等. 基于GWO-NLM与CEEMDAN的滚动轴承故障诊断方法[J]. 航空动力学报, 2023, 38(5): 1185-1197. DOI: 10.13224/j.cnki.jasp.20210547. [25] 陈闻鹤, 程龙生, 常志朋, 等. 改进BiLSTM-GRU-DMD的风机叶片结冰故障检测与状态评估模型[J]. 工业工程与管理, 2023, 28(5): 108-118. DOI: 10.19495/j.cnki.1007-5429.2023.05.012. [26] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. DOI: 10.1162/neco.1997.9.8.173. [27] VASWANI A, SHAZEER N, PARMAR N, et al. Attention Is All You Need[EB/OL]. (2017-07-12-06)[2024-12-18]. https://arxiv.org/abs/1706.03762. [28] LIN T Y, GOYAL P, GIRSHICK R et al. Focal Loss for Dense Object Detection[EB/OL].(2017-08-07)[2024-12-18]. https://arxiv.org/abs/1708.02002. [29] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357. DOI: 10.1613/jair.953. [30] AMIRI M H, MEHRABI HASHJIN N, MONTAZERI M, et al. Hippopotamus optimization algorithm: a novel nature-inspired optimization algorithm[J]. Scientific Reports, 2024, 14(1): 5032. DOI: 10.1038/s41598-024-54910-3. [31] MAKKONEN L. Models for the growth of rime, glaze, icicles and wet snow on structures[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2000, 358(1776): 2913-2939. DOI: 10.1098/rsta.2000.0690. [32] RAHIMI E, RABIEE A, AGHAEI J, et al. On the management of wind power intermittency[J]. Renewable and Sustainable Energy Reviews, 2013, 28: 643-653. DOI: 10.1016/j.rser.2013.08.034. |
| [1] | WEI Zishu, CHEN Zhigang, WANG Yanxue, Hasitieer Madetihan. Lightweight Bearing Defect Detection Algorithm Based on SBSI-YOLO11 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 80-91. |
| [2] | LI Zongxiao, ZHANG Jian, LUO Xinyue, ZHAO Yifei, LU Fei. Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 15-23. |
| [3] | SHI Tianyi, NAN Xinyuan, GUO Xiangyu, ZHAO Pu, CAI Xin. Improved ConvNeXt-based Algorithm for Apple Leaf Disease Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 83-96. |
| [4] | SU Chunhai, XIA Haiying. Facial Expression Recognition Based on Noise-Resistant Dual Constraint Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 70-82. |
| [5] | LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89-100. |
| [6] | HOU Haiyan, TAN Yumei, SONG Shuxiang, XIA Haiying. Head Pose-Robust Facial Expression Recognition [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 126-137. |
| [7] | LU Jiahui, CHEN Qingfeng, WANG Wenguang, YU Qian, HE Naixu, HAN Zongzhao. Multi-scale Attention Learning for Abdomen Multi-organ Image Segmentation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 138-148. |
| [8] | DU Shuaiwen, JIN Ting. A Deep Hybrid Recommendation Algorithm Based on User Behavior Characteristics [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 91-100. |
| [9] | YI Jianbing, PENG Xin, CAO Feng, LI Jun, XIE Weijia. Research on Point Cloud Registration Algorithm Based on Multi-scale Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 108-120. |
| [10] | XIAO Yuting, LÜ Xiaoqi, GU Yu, LIU Chuanqiang. Classification of Diabetic Retinopathy Based on Split Residual Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 91-101. |
| [11] | GAO Fei, GUO Xiaobin, YUAN Dongfang, CAO Fujun. Improved PINNs Method for Solving the Convective Dominant Diffusion Equation with Boundary Layer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 33-50. |
| [12] | JIANG Yibo, LIU Huijia, WU Tian. Research on Identification of Lightning Overvoltage in Transmission Line by Improved Residual Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 74-83. |
| [13] | TANG Houqing, XIN Binbin, ZHU Hongyu, YI Jiawei, ZHANG Dongdong, WU Xinzhang, SHUANG Feng. Rolling Bearing Fault Diagnosis Based on Multi-scale Attentional Inverted Residual Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 109-122. |
| [14] | TIAN Sheng, ZHANG Jinming, LI Chengwei, LI Jia. Fault Prediction of Electric Vehicle Based on BS_Bagging-cLightGBM Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 9-19. |
| [15] | YANG Shuozhen, ZHANG Long, WANG Jianhua, ZHANG Hengyuan. Review of Sound Event Detection [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 1-18. |
|