Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (2): 238-252.doi: 10.16088/j.issn.1001-6600.2025033001

• Ecology and Environmental Science Research • Previous Articles     Next Articles

Effects of Clonal Integration of Loropetalum chinenseon Leaf and Root Nutrients in Karst Dry Season

HE Haoyong1,2,3, LIU Ning1,2,3, MO Yanhua1,2,3, YANG Xinliang1,2,3, XIE Xiaoli1,2,3, LUO Chengjie1,2,3, MO Yiwen1,2,3, ZHANG Yuyang1,2,3, MA Jiangming1,2,3*   

  1. 1. Key Laboratory of Rare and Endangered Animal and Plant Ecology and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. Key Laboratory of Landscape Resource Conservation and SustainableUtilization in the Lijiang River Basin of Guangxi (Guangxi Normal University), Guilin Guangxi 541006, China;
    3. Institute forSustainable Development and Innovation, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2025-03-30 Revised:2025-04-20 Published:2026-02-03

Abstract: Loropetalum chinense is the dominant tree species for karst vegetation restoration in Lijiang River Basin. Based on its clonal growth characteristics, L. chinense can well adapt to heterogeneous habitats. To investigate the impacts of clonal integration on leaf and root nutrient contents in L. chinense, this study employed a space-for-time substitution approach, focusing on L. chinense in dry-season habitats across different successional stages (shrub, shrub-tree, and tree stages) in karst rocky mountainous areas of the Li River Basin. Analyzed variations in carbon (C), nitrogen (N), and phosphorus (P) contents in leaves, roots, and rhizosphere soil of mother ramets, daughter ramets, and non-clonal plants. The interactions between plant nutrient status, rhizosphere soil physicochemical properties, and their responses to successional stage changes and clonal integration during the dry season were further explored. The results demonstrated that: 1) Leaf C, N, P and root C, P contents of L. chinense increased significantly with successional progression. Clonal integration significantly affected leaf water content, leaf C, N contents, and root C, P contents. Notably, non-clonal plants exhibited 5.83% and 5.24% higher root C content compared with mother and daughter ramets in the shrub stage, and 1.3% and 0.5% higher in the tree stage, respectively. Root P content of non-clonal plants in the tree stage was 120.86% and 75.64% higher than that of mother and daughter ramets. 2) Significant nutrient differences existed between leaves and roots, with water content, C, N, and P contents being significantly higher in leaves than in roots, except for occasional non-significant differences in C and P contents. The effects of succession stage and clonal integration on C and P nutrient distribution were significant. In the tree stage, the mother ramets and daughter ramets transported more C and P nutrients to the leaves than the uncloned plants, but there was no significant difference in nutrient distribution between shrub and tree-shrub stages. 3) Under combined effects of clonal integration and successional changes, plant-rhizosphere soil interaction was significantly stronger in shrub and tree stages than in the shrub-tree stage, with mother ramets showing higher interaction intensity than daughter ramets and non-clonal plants. The rhizosphere soil pH, available nitrogen (HN), total phosphorus (TP) and available phosphorus (AP) in the shrub stage were positively correlated with the nutrients of L. chinense, and the pH was negatively correlated. The rhizosphere soil organic carbon (SOC), total nitrogen (TN), HN, TP and AP were positively correlated with the nutrients of L. chinense at the tree stage. This study showed that the natural succession and clonal integration of L. chinense community had a certain influence on the leaf and root nutrients and rhizosphere soil of L. chinense. For L. chinense in shrub and tree-shrub stages, it was necessary to improve soil pH and increase the supply of N and P nutrients. The tree stage is limited by the high calcium and magnesium high pH in the karst area, and its soil pH needs to be improved to help use soil nutrients.

Key words: Loropetalum chinense, clonal integration, leaf nutrient, root nutrient, karst

CLC Number:  Q948
[1] WAN J Z, WANG C J, YU F H.Large-scale environmental niche variation between clonal and non-clonal plant species:roles of clonal growth organs and ecoregions[J].Science of the Total Environment, 2019, 652:1071-1076.DOI:10.1016/j.scitotenv.2018.10.280.
[2] KLIMEŠ L, KLIMEŠOVÁ J, HENDRIKS R, et al.Clonal plant architecture:a comparative analysis of form and function[C]//DE KROON H, VAN GROENENDAEL J.The Ecology and Evolution of Clonal Plants.Leiden:Backbuys Publishers, 1997:1-29.
[3] 冯欣悦, 于跃, 张丽, 等.植物克隆整合生态效应及潜在应用[J].生态学报, 2024, 44(5):2149-2158.DOI:10.20103/j.stxb.202301170118.
[4] CARACO T, KELLY C K.On the adaptive value of physiological integraton in colonal plants[J].Ecology, 1991, 72(1):81-93.DOI:10.2307/1938904.
[5] 王蕤蕊, 张桥英, 张运春, 等.克隆整合与距离效应对不同镉胁迫下空心莲子草入侵性的影响[J].草业科学, 2024, 41(6):1297-1305.DOI:10.11829/j.issn.1001-0629.2023-0034.
[6] 李月华, 周钰航, 吴浩海, 等.莲草直胸跳甲取食密度对空心莲子草克隆整合能力的影响[J].福建农业学报, 2024, 39(10):1189-1197.DOI:10.19303/j.issn.1008-0384.2024.10.010.
[7] 但一, 邓洁, 段苏娟, 等.异质性光照下克隆整合对白夹竹根际土壤细菌共现网络的影响[J].四川师范大学学报(自然科学版), 2024, 47(6):769-778.DOI:10.3969/j.issn.1001-8395.2024.06.006.
[8] 莫燕华, 邹涵, 马姜明, 等.喀斯特石山不同演替阶段檵木群落土壤温湿度变化[J].广西师范大学学报(自然科学版), 2021, 39(3):122-130.DOI:10.16088/j.issn.1001-6600.2020033103.
[9] YU M Z, SONG S, HE G Z, et al.Vegetation landscape changes and driving factors of typical karst region in the anthropocene[J].Remote Sensing, 2022, 14(21):5391.DOI:10.3390/rs14215391.
[10] LI L, ZHANG H Q, TANG M, et al.Nutrient uptake and distribution in mycorrhizal cuttings of Populus × canadensis ‘Neva’ under drought stress[J].Journal of Soil Science and Plant Nutrition, 2021, 21(3):2310-2324.DOI:10.1007/s42729-021-00523-y.
[11] 覃扬浍, 马姜明, 梅军林, 等.漓江流域岩溶区檵木群落不同恢复阶段凋落物分解初期动态[J].生态学报, 2017, 37(20):6792-6799.DOI:10.5846/stxb201606291301.
[12] 王雅楠, 马姜明, 梁月明, 等.喀斯特石山老龄林檵木根际和非根际土壤微生物群落及酶活性的旱、雨季节变化[J].广西植物, 2024, 44(10):1848-1863.DOI:10.11931/guihaia.gxzw202307045.
[13] 菅瑞, 马姜明, 莫燕华, 等.桂林喀斯特石山檵木群落不同恢复阶段种间联结研究[J].广西植物, 2021, 41(5):746-757.DOI:10.11931/guihaia.gxzw201910029.
[14] WANG D H, SONG F S, ZHOU Y T, et al.Effects of alkaline salt stress on growth, physiological properties and medicinal components of clonal Glechoma longituba (Nakai) Kupr[J].BMC Plant Biology, 2024, 24(1):965.DOI:10.1186/s12870-024-05668-3.
[15] 马姜明, 吴蒙, 占婷婷, 等.漓江流域岩溶区檵木群落不同恢复阶段物种组成及多样性变化[J].生态环境学报, 2013, 22(1):66-71.DOI:10.16258/j.cnki.1674-5906.2013.01.002.
[16] LIU P W, DING S Y, LIU N, et al.Effects of detritus treatments on soil microbial community composition, structure andnutrient limitation in a subtropical karst ecosystem[J].Journal of Soil Science and Plant Nutrition, 2024, 24(2):3265-3281.DOI:10.1007/s42729-024-01750-9.
[17] 刘宁, 刘佩雯, 何浩勇, 等.凋落物对喀斯特檵木土壤微生物生物量和土壤酶活性的影响[J].广西师范大学学报(自然科学版), 2025, 43(1):161-173.DOI:10.16088/j.issn.1001-6600.2024080202.
[18] LI J, CHENG X Y, CHU G X, et al.Continuous cropping of cut Chrysanthemum reduces rhizospheric soil bacterial community diversity and co-occurrence network complexity[J].Applied Soil Ecology, 2023, 185:104801.DOI:10.1016/j.apsoil.2022.104801.
[19] 欧阳资文, 彭晚霞, 宋同清, 等.喀斯特峰丛洼地土壤有机质的空间变化及其对干扰的响应[J].应用生态学报, 2009, 20(6):1329-1336.
[20] 艾宁, 强大宏, 刘广全, 等.煤矿复垦区林龄与叶位对沙棘果叶含水量的影响[J].西北林学院学报, 2020, 35(1):68-72.DOI:10.3969/j.issn.1001-7461.2020.01.10.
[21] 魏杰, 王晶苑, 温学发.植物光合与呼吸过程CO2及其δ13C的变异特征与影响因素研究进展[J].生态学报, 2023, 43(10):4319-4331.DOI:10.5846/stxb202202180392.
[22] CHEN L L, DENG Q, YUAN Z Y, et al.Age-related C∶N∶P stoichiometry in two plantation forests in the Loess Plateau of China[J].Ecological Engineering, 2018, 120:14-22.DOI:10.1016/j.ecoleng.2018.05.021.
[23] 黄健, 吴凯, Muhammad Ahtesham Aslam, 等.光竞争对杉木幼苗生长、生物量分配及叶片化学计量特征的影响[J].西北林学院学报, 2024, 39(5):168-175.DOI:10.3969/j.issn.1001-7461.2024.05.21.
[24] 白瑞霞.养分异质条件下结缕草克隆分株及土壤氮、磷、钾的含量研究[D].沈阳:辽宁大学, 2016.
[25] LIU J T, GU Z J, SHAO H B, et al.N-P stoichiometry in soil and leaves of Pinus massoniana forest at different stand ages in the subtropical soil erosion area of China[J].Environmental Earth Sciences, 2016, 75(14):1091.DOI:10.1007/s12665-016-5888-7.
[26] CHANG Y N, ZHONG Q L, YANG H, et al.Patterns and driving factors of leaf C, N, and P stoichiometry in two forest types with different stand ages in a mid-subtropical zone[J].Forest Ecosystems, 2022, 9:100005.DOI:10.1016/j.fecs.2022.100005.
[27] HERBEN T, NOVÁKOVÁ Z, KLIMEŠOVÁ J.Clonal growth and plant species abundance[J].Annals of Botany, 2014, 114(2):377-388.DOI:10.1093/aob/mct308.
[28] 冯欣悦.刈割与施氮条件下羊草克隆整合对修复盐碱化草地的作用机制[D].长春:东北师范大学, 2023.DOI:10.27011/d.cnki.gdbsu.2023.001467.
[29] 段文军, 王金叶.广西喀斯特和红壤地区桉树人工林土壤理化性质对比研究[J].生态环境学报, 2013, 22(4):595-597.DOI:10.16258/j.cnki.1674-5906.2013.04.011.
[30] 衣晓丹.不同发育阶段杉木人工林土壤理化性质及凋落物养分储存量研究[D].北京:北京林业大学, 2013.
[31] 尹艳杰.川南不同林龄马尾松人工林土壤理化性质特征[D].雅安:四川农业大学, 2014.
[32] 罗华, 杨洪.浅谈对碱解氮的认识[J].石河子科技, 1999(2):42-44.
[33] 覃其云, 唐健, 邓小军, 等.广西马尾松人工林土壤肥力评价研究[J].林业调查规划, 2017, 42(6):16-21, 32.DOI:10.3969/j.issn.1671-3168.2017.06.004.
[34] XI D G, YOU W H, HU A N, et al.Developmentally programmed division of labor in the aquatic invader Alternanthera philoxeroides under homogeneous soil nutrients[J].Frontiers in Plant Science, 2019, 10:485.DOI:10.3389/fpls.2019.00485.
[35] SMAILL S J, CLINTON P W, ALLEN R B, et al.Coarse soil can enhance the availability of nutrients from fine soil[J].Journal of Plant Nutrition and Soil Science, 2014, 177(6):848-850.DOI:10.1002/jpln.201400463.
[36] LUO Y Z, LIU H, YAN G J, et al.Roots of lucerne seedlings are more resilient to a water deficit than leaves or stems[J].Agronomy, 2019, 9(3):123.DOI:10.3390/agronomy9030123.
[37] 李靖.不同林龄杉木和华北落叶松人工林氮磷养分特征与根构型研究[D].杨凌:西北农林科技大学, 2013.
[38] 盘金文, 郭其强, 孙学广, 等.不同林龄马尾松人工林碳、氮、磷、钾养分含量及其生态化学计量特征[J].植物营养与肥料学报, 2020, 26(4):746-756.DOI:10.11674/zwyf.19272.
[39] LOZANO Y M, AGUILAR-TRIGUEROS C A, FLAIG I C, et al.Root trait responses to drought are more heterogeneous than leaf trait responses[J].Functional Ecology, 2020, 34(11):2224-2235.DOI:10.1111/1365-2435.13656.
[40] 莫燕华, 马姜明, 苏静, 等.桂林岩溶石山檵木群落老龄林植物叶性状[J].广西植物, 2019, 39(8):1059-1068.DOI:10.11931/guihaia.gxzw201809005.
[41] 赵维俊, 敬文茂, 赵永宏, 等.祁连山大野口流域典型灌丛植物与土壤中氮磷的化学计量特征[J].土壤, 2017, 49(3):572-579.DOI:10.13758/j.cnki.tr.2017.03.021.
[42] 刘洢杋, 杨峻晖, 刘家齐, 等.喀斯特和非喀斯特森林植物磷含量及土壤无机磷分级特征比较[J].南方农业学报, 2023, 54(1):110-118.DOI:10.3969/j.issn.2095-1191.2023.01.011.
[43] 梁婷婷, 方晰, 孙龙, 等.亚热带4个树种不同器官C、N、P化学计量比及其异速关系[J].生态学报, 2025, 45(5):2449-2463.DOI:10.20103/j.stxb.202311142473.
[44] LONG M, WU H H, SMITH M D, et al.Nitrogen deposition promotes phosphorus uptake of plants in a semi-arid temperate grassland[J].Plant and Soil, 2016, 408(1):475-484.DOI:10.1007/s11104-016-3022-y.
[45] KRISTENSEN H L, STAVRIDOU E.Deep root growth and nitrogen uptake by rocket (Diplotaxis tenuifolia L.) as affected by nitrogen fertilizer, plant density and leaf harvesting on a coarse sandy soil[J].Soil Use and Management, 2017, 33(1):62-71.DOI:10.1111/sum.12334.
[46] ZHANG H P, YIN T M.Identifying hub genes and key functional modules in leaf tissue of Populus species based on WGCNA[J].Genetica, 2024, 153(1):5.DOI:10.1007/s10709-024-00222-3.
[47] ARAUS V, SWIFT J, ALVAREZ J M, et al.A balancing act:how plants integrate nitrogen and water signals[J].Journal of Experimental Botany, 2020, 71(15):4442-4451.DOI:10.1093/jxb/eraa054.
[48] CHEN X L, CHEN H Y H.Foliar nutrient resorption dynamics of trembling aspen and white birch during secondary succession in the boreal forest of central Canada[J].Forest Ecology and Management, 2022, 505:119876.DOI:10.1016/j.foreco.2021.119876.
[49] YANG X, WANG B R, FAKHER A, et al.Contribution of roots to soil organic carbon:From growth to decomposition experiment[J].Catena, 2023, 231:107317.DOI:10.1016/j.catena.2023.107317.
[50] 张华锋, 徐梁, 潘江灵, 等.於术现蕾期各器官主要营养元素含量及与土壤养分的相关性[J].山东林业科技, 2023, 53(2):44-49.DOI:10.3969/j.issn.1002-2724.2023.02.009.
[51] 张凯, 侯继华, 何念鹏.油松叶功能性状分布特征及其控制因素[J].生态学报, 2017, 37(3):736-749.DOI:10.5846/stxb201508291793.
[1] WANG Yang, HOU Manfu, BAI Shuo. Effect of Nitrogen and Phosphorus Addition on Litter Decompositionin Subtropical Karst Forests [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 228-237.
[2] LI Peiyun, ZHANG Yuan, CHEN Rongshu, HU Xinyue, XU Haiying, LÜ Li, LIANG Jianhong, ZHU Jing. Response Strategies of Microorganisms to Nutrient Limitations in Bulk and Aggregates of Limestone and Red Soils [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 156-171.
[3] HE Wenmin, LIU Xuanyuan, ZHOU Qihai, ZHANG Mingxia. Optimizing Accuracy of Random Forest Interpretation Based on Terrain Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 227-236.
[4] SHI Huilu, MO Yanhua, LUO Haiyu, MA Jiangming. Inhibitory Activity of Ethyl Acetate Extracts of Loropetalum chinense against Pathogens [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 1-8.
[5] TANG Li, LI Mengxia, HUANG Huixin, PAN Xinru, JIANG Xuefang, YANG Shujun, PAN Yu, QIN Yunbin. Effects of Karst Vegetation Restoration on GRSP in Northern Guangxi [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 9-19.
[6] LIU Ning, LIU Peiwen, HE Haoyong, LI Jiawei, DENG Yuting, WANG Lu, LÜ Jiaheng, LU Liqiu, HUANG Jianhua, MA Jiangming. Effects of Litter on Soil Microbial Biomass and Soil Enzyme Activities of Loropetalum chinense Community in Karst Area [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 161-173.
[7] YANG Pan, HUANG Ying, CEN Lijie, HUANG Li, WANG Haimiao. Distribution of C, N, P, K and Its Ecological Stoichiometry Characteristics in Alchornea trewioides [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 169-178.
[8] LIU Peiwen, QIN Yunbin, MO Huiting, ZHOU Zhenhui, MENG Weiming, HUANG Qixiang, MA Jiangming. Effects of Litter and Root Input and Removal on Soil Nutrient, Enzyme Activity, and Stoichiometry in Karst of Loropetalum chinense [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 179-191.
[9] LIU Xuanyuan, GUAN Chaoyi, ZHANG Mingxia, ZHOU Qihai. Mitigation of Reserve on Karst Forest Landscape Fragmentation by Cropland Expansion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 202-210.
[10] HE Fangyuang, SU Quan, CHEN Kunquan, CHEN Shandong, JIANG Yong, LUO Ming, LIANG Shichu. Exploring Community Assembly of Guilin Karst Hills Based on Functional Traits and Phylogeny [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 171-181.
[11] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22-34.
[12] TANG Chuangbin, DONG Peipei, HUANG Qiuchan, TAN Weining, ZHOU Qihai, WANG Guohai. Comparison of Seed Removal Behavior of Rodents to Kmeria septentrionalis and Cyclobalanopsis glauca in the Karst Habitat [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 199-204.
[13] MO Yanhua, ZOU Han, MA Jiangming, LI Yufeng, JIAN Rui, QIN Jiashuang, SONG Zunrong, LIN Zhengzhong. Variation of Soil Temperature and Moistureat Different Successional Stages of Loropetalum chinense Communities in Karst Hills of Guilin, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 122-130.
[14] ZHU Bailu, YANG Qiyong, XIE Yunqiu, DENG Yan, TANG Meirong, LIU Dacun, ZENG Hongchun. Spatial Distribution and Driving Factors of Karst Rocky Desertification in Lijiang River Basin [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 139-150.
[15] LI Youbang, NONG Juanli, YANG Wanlin, ZHAO Jiajia, ZHU Qiqi. Daily Activity Patterns of Two Sympatric Squirrels Callosciurus erythraeus and Dremomys rufigenis in Nonggang, Guangxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 71-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TIAN Sheng, ZHAO Kailong, MIAO Jialin. Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 1 -9 .
[2] XU Xiuhong, ZHANG Jinyan, LU Yuling, LIANG Xiaoping, LIAO Guangfeng, LU Rumei. Research Progress of New C21 Steroids in Medicinal Plants of Asclepiadaceae(Ⅱ)[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 1 -16 .
[3] WANG Xingyu, ZHENG Haonan, LIU Xiao, CUI Shilong, CAI Jinjun. Research Progress on Preparation of Chitosan-based Adsorbents andTheir Applications Towards Adsorptive Removal of Pollutants From Water[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 17 -30 .
[4] TIAN Sheng, FENG Shuaitao, LI Jia. A Framework for Enhanced Vehicle Trajectory Extraction in Urban Road Scenes[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 31 -51 .
[5] LÜ Hui, SI Ke. Photovoltaic Panel Defect Detection Based on Improved RT-DETR[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 52 -64 .
[6] SONG Guanwu, LI Jianjun. Semantic Segmentation of Remote Sensing Images Basedon Self-distillation Edge Refinement[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 65 -76 .
[7] WANG Xuyang, LIANG Yuhang. Multi-scale Asymmetric Attention Transformer for Remote Sensing Image Dehazing[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 77 -89 .
[8] ZHANG Shengwei, CAO Jie. Detection Algorithm of Tiny Defects on Steel Surface Based onFourier Convolution and Difference Perception[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 90 -102 .
[9] WANG Wei, LI Zhiwei, ZHANG Zhaoyang, ZHANG Hong, ZHOU Li, WANG Zhen, HUANG Fang, WANG Can. Carbon Emission Prediction of Substation Based on IFA-BP Neural Network Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 103 -114 .
[10] LUO Yuan, ZHU Wenzhong, WANG Wen, WU Yuhao. A Multi-step Water Quality Prediction Model Based on Improved PatchTST[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 115 -131 .