Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (6): 179-191.doi: 10.16088/j.issn.1001-6600.2023031303

Previous Articles     Next Articles

Effects of Litter and Root Input and Removal on Soil Nutrient, Enzyme Activity, and Stoichiometry in Karst of Loropetalum chinense

LIU Peiwen1,2, QIN Yunbin1,2,3, MO Huiting1,2, ZHOU Zhenhui1,2, MENG Weiming1,2, HUANG Qixiang1,2, MA Jiangming1,2,3*   

  1. 1. Key Laboratory of Ecology and Environmental Protection of Rare and Endangered Animals and Plants, Ministry of Education (Guangxi Normal University), Guilin Guangxi 541006, China;
    2. Guangxi Key Laboratory for Conservation and Sustainable Utilization of Landscape Resources in Lijiang River Basin (Guangxi Normal University), Guilin Guangxi 541006, China;
    3. Institute of Sustainable Development and Innovation, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2023-03-13 Revised:2023-04-24 Published:2023-12-04

Abstract: The changes in soil physicochemical properties caused by changes in litter input can significantly affect the content of soil carbon, nitrogen, and phosphorus nutrients, as well as changes in soil extracellular enzyme activity and stoichiometry characteristics. To further clarify the impact of changes in litter input on soil nutrient content, extracellular enzyme activity, and stoichiometry in karst areas, and to explore the ecological response patterns between extracellular enzymes and environmental factors, in this study, the soil of Loropetalum chinense aged forest in karst area was taken as the research object, and litter addition and removal experiments were arranged. Through the determination of soil nutrients and extracellular enzyme activities, the theory and methods of Ecological stoichiometry were used to systematically study six extracellular hydrolases in the soil(β-1,4-glucosidase (BG), β-1,4-Xylosidase (BX), cellulose hydrolase (CBH), β-1,4-acetylglucosaminidase (NAG), leucine aminopeptidase (LAP), acid phosphatase (AP) and two extracellular enzymes (catalase (CAT) and polyphenol oxidase (PPO)), as well as their stoichiometric effects, were studied, and their correlation with soil environmental factors were analyzed. The results showed that: (1) Compared with the control (CK), the content of soil SOC and TN showed significant changes under the addition of litter; And the C∶N value significantly increased in the treatment of removing the root system of litter (ABR) and adding double litter (AD); (2) The activity of catalase was the highest under the control (CK) treatment, and there was a significant difference compared with other treatments; The activity of polyphenol oxidase was the highest in the treatment of removing litter roots (ABR), and there was a significant difference compared with the treatment of double litter addition (AD) and root removal (BR); In addition, the vector angle of soil enzyme activity was less than 45°, indicating that the soil of the aged Loropetalum chinense forest was mainly limited by nitrogen elements; (3) The results of RDA analysis showed that there was a significant positive correlation between soil extracellular enzymes BX, CBH, NAG content, enzyme C∶N, and enzyme N∶P, and soil available phosphorus and ammonia nitrogen; The content of soil extracellular enzymes LAP, AP, BG, CAT, PPO, and enzyme C∶P were positively correlated with soil available potassium content, but negatively correlated with total phosphorus and nitrate nitrogen content.

Key words: karst area, litter input, soil nutrient, soil extracellular enzyme, stoichiometryic ratio

CLC Number:  S154, S714
[1] KEILUWEIT M, NICO P S, KLEBER M, et al. Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils[J]. Biogeochemistry, 2016, 127(2): 157-171. DOI: 10.1007/s10533-015-0180-6.
[2] 孙彩丽, 王艺伟, 王从军, 等. 喀斯特山区土地利用方式转变对土壤酶活性及其化学计量特征的影响[J]. 生态学报, 2021, 41(10): 4140-4149. DOI: 10.5846/stxb202007161864.
[3] 梁毅, 杨慧, 曹建华, 等. 不同土地利用方式下土壤养分和酶活性的变化[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 125-129. DOI: 10.16088/j.issn.1001-6600.2013.01.015.
[4] 李阳兵, 侯建筠, 谢德体. 中国西南岩溶生态研究进展[J]. 地理科学, 2002, 22(3): 365-370. DOI: 10.3969/j.issn.1000-0690.2002.03.019.
[5] 廖全兰, 龙翠玲, 薛飞, 等. 茂兰喀斯特森林不同地形土壤酶活性及养分特征[J]. 森林与环境学报, 2020, 40(2): 164-170. DOI: 10.13324/j.cnki.jfcf.2020.02.008.
[6] 吴丽芳, 王紫泉, 王妍, 等. 喀斯特高原不同石漠化程度土壤C、N、P化学计量特征和酶活性的关系[J]. 生态环境学报, 2019, 28(12): 2332-2340. DOI: 10.16258/j.cnki.1674-5906.2019.12.004.
[7] 徐广平, 顾大形, 潘复静, 等. 不同土地利用方式对桂西南岩溶山地土壤酶活性的影响[J]. 广西植物, 2014, 34(4): 460-466. DOI: 10.3969/j.issn.1000-3142.2014.04.006.
[8] 刘进, 李娟, 龙健, 等. 西南喀斯特区土壤生态化学计量与酶活性的海拔特征[J]. 森林与环境学报, 2022, 42(2): 113-122. DOI: 10.13324/j.cnki.jfcf.2022.02.001.
[9] 曹升, 潘菲, 林根根, 等. 不同林龄杉木林土壤细菌群落结构与土壤酶活性变化研究[J]. 生态学报, 2021, 41(5): 1846-1856. DOI: 10.5846/stxb202004010772.
[10] 李秋梅, 黎胜杰, 王欣丽, 等. 改变碳输入对沂蒙山区典型次生林土壤微生物碳源代谢功能的影响[J]. 生态学报, 2021, 41(10): 4110-4119. DOI: 10.5846/stxb201912032611.
[11] 侯庸, 王桂青, 王伯荪, 等. 广东黑石顶自然保护区南亚热带常绿阔叶林凋落物能流的研究[J]. 生态科学, 2000, 19(2): 7-11. DOI: 10.3969/j.issn.1008-8873.2000.02.002.
[12] WEINTRAUB S R, WIEDER W R, CLEVELAND C C, et al. Organic matter inputs shift soil enzyme activity and allocation patterns in a wet tropical forest[J]. Biogeochemistry, 2013, 114(1): 313-326. DOI: 10.1007/s10533-012-9812-2.
[13] 陆耀东,薛立,曹鹤,等.去除地面枯落物对加勒比松(Pinus caribaea)林土壤特性的影响[J].生态学报, 2008, 28(7): 3205-3211. DOI: 10.1007/978-1-4020-9623-5-5.
[14] FENG J G, HE K Y, ZHANG Q F, et al. Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems[J]. Global Change Biology, 2022, 28(10): 3426-3440. DOI: 10.1111/gcb.16107.
[15] 马姜明, 吴蒙, 占婷婷, 等. 漓江流域岩溶区檵木群落不同恢复阶段物种组成及多样性变化[J]. 生态环境学报, 2013, 22(1): 66-71. DOI: 10.16258/j.cnki.1674-5906.2013.01.002.
[16] VERES Z, KOTROCZÓ Z, FEKETE I, et al. Soil extracellular enzyme activities are sensitive indicators of detrital inputs and carbon availability[J]. Applied Soil Ecology, 2015, 92: 18-23. DOI: 10.1016/j.apsoil.2015.03.006.
[17] 莫燕华, 马姜明, 苏静, 等. 桂林岩溶石山檵木群落老龄林植物叶性状[J]. 广西植物, 2019, 39(8): 1059-1068. DOI: 10.11931/guihaia.gxzw201809005.
[18] 李东, 田秋香, 赵小祥, 等. 贡嘎山树线过渡带土壤胞外酶活性及其化学计量比特征[J]. 植物生态学报, 2022, 46(2): 232-242. DOI: 10.17521/cjpe.2021.0215.
[19] 左宜平, 张馨月, 曾辉, 等. 大兴安岭森林土壤胞外酶活力的时空动态及其对潜在碳矿化的影响[J]. 北京大学学报(自然科学版), 2018, 54(6): 1311-1324. DOI: 10.13209/j.0479-8023.2018.089.
[20] 万晓华, 黄志群, 何宗明, 等. 改变碳输入对亚热带人工林土壤微生物生物量和群落组成的影响[J]. 生态学报, 2016, 36(12): 3582-3590. DOI: 10.5846/stxb201310142473.
[21] 庞宗清, 陈伟彬, 苏芳龙, 等. 凋落物和根系输入对南亚热带季风常绿阔叶林土壤养分的影响[J]. 生态学报, 2022,42(22): 9143-9152. DOI: 10.5846/stxb202106051458.
[22] 李海燕. 凋落物对过熟马尾松纯林及混交林土壤养分与微生物的影响[D]. 南宁: 广西大学, 2019.
[23] 魏翠翠, 刘小飞, 林成芳, 等. 凋落物输入改变对亚热带两种米槠次生林土壤酶活性的影响[J]. 植物生态学报, 2018, 42(6): 692-702. DOI: 10.17521/cjpe.2017.0247.
[24] BOWDEN R D, DEEM L, PLANTE A F, et al. Litter input controls on soil carbon in a temperate deciduous forest[J]. Soil Science Society of America Journal, 2014, 78(S1): S66-S75. DOI: 10.2136/sssaj2013.09.0413nafsc.
[25] SUN X L, ZHAO J, YOU Y M, et al. Soil microbial responses to forest floor litter manipulation and nitrogen addition in a mixed-wood forest of northern China[J]. Scientific Reports, 2016, 6(1): 19536. DOI: 10.1038/srep19536.
[26] 温远光, 李海燕, 周晓果, 等. 马尾松×红锥异龄混交林对土壤微生物群落结构和功能的影响[J]. 广西科学, 2019, 26(2): 188-198. DOI: 10.13656/j.cnki.gxkx.20190419.001.
[27] 邢学霞, 付迪, 黎建强, 等. 凋落物输入变化对云南松林土壤微生物数量和酶活性的影响[J]. 西北农林科技大学学报(自然科学版), 2023,51(3): 62-70. DOI: 10.13207/j.cnki.jnwafu.2023.03.007.
[28] 任书杰, 于贵瑞, 陶波, 等. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J]. 环境科学, 2007, 28(12): 2665-2673. DOI: 10.13227/j.hjkx.2007.12.007.
[29] TIAN H Q, CHEN G S, ZHANG C, et al. Pattern and variation of C∶N∶P ratios in China's soils: a synthesis of observational data[J]. Biogeochemistry, 2010, 98(1): 139-151. DOI: 10.1007/s10533-009-9382-0.
[30] 刘源, 李晓晶, 段玉玺, 等. 库布齐沙漠东部植被恢复对土壤生态化学计量的影响[J]. 干旱区研究, 2022, 39(3): 924-932. DOI: 10.13866/j.azr.2022.03.26.
[31] 李雅男, 李邵宇, 史世斌, 等. 荒漠草原不同放牧强度下土壤酶化学计量特征的研究[J]. 草地学报, 2022, 30(9): 2239-2248. DOI: 10.11733/j.issn.1007-0435.2022.09.002.
[32] 刘珊杉, 周文君, 况露辉, 等. 亚热带常绿阔叶林土壤胞外酶活性对碳输入变化及增温的响应[J]. 植物生态学报, 2020, 44(12): 1262-1272. DOI: 10.17521/cjpe.2020.0310.
[33] 赵雪莱, 何兴东, 薛苹苹, 等. 土壤碳酸钙/有效磷化学计量特征对油蒿群落植物密度的影响[J]. 科学通报, 2012, 57(1): 80-87. DOI: 10.1007/s11434011-4866-4.
[34] 李强, 漆昊, 何国兴, 等. 东祁连山高寒草甸土壤酶活性及其化学计量特征对海拔和坡向的响应[J]. 水土保持学报, 2022, 36(4): 357-364. DOI:10.13870/j.cnki.stbcxb.2022.04.044.
[35] 闫丽娟, 王海燕, 李广, 等. 黄土丘陵区4种典型植被对土壤养分及酶活性的影响[J]. 水土保持学报, 2019, 33(5): 190-196,204. DOI: 10.13870/j.cnki.stbcxb.2019.05.028.
[36] BADIANE N N Y, CHOTTE J L, PATE E, et al. Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid tropical regions[J]. Applied Soil Ecology, 2001, 18(3): 229-238. DOI: 10.1016/S0929-1393(01)00159-7.
[37] 阮超越, 刘小飞, 吕茂奎, 等. 杉木人工林凋落物添加与去除对土壤碳氮及酶活性的影响[J]. 土壤学报, 2020, 57(4): 954-962. DOI: 10.11766/trxb201808060408.
[38] 杨洋, 王继富, 张心昱, 等. 凋落物和林下植被对杉木林土壤碳氮水解酶活性的影响机制[J]. 生态学报, 2016, 36(24): 8102-8110. DOI: 10.5846/stxb201505040908.
[39] 胡亚林, 汪思龙, 黄宇, 等. 凋落物化学组成对土壤微生物学性状及土壤酶活性的影响[J]. 生态学报, 2005, 25(10): 2662-2668. DOI: 10.3321/j.issn:1000-0933.2005.10.030.
[40] FREEMAN C, OSTLE N, KANG H. An enzymic‘latch’ on a global carbon store[J]. Nature, 2001, 409: 149. DOI: 10.1038/35051650.
[41] SINSABAUGH R L, HILL B H, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature, 2009, 462: 795-798. DOI: 10.1038/nature08632.
[42] 王晶晶, 黄刚, 吕坤, 等. 热带-亚热带森林不同植被类型的土壤酶活性及化学计量特征[J]. 应用与环境生物学报, 2023, 29(2):423-431. DOI: 10.19675/j.cnki.1006-687x.2021.11055.
[43] 张星星, 杨柳明, 陈忠, 等. 中亚热带不同母质和森林类型土壤生态酶化学计量特征[J]. 生态学报, 2018, 38(16): 5828-586. DOI: 10.5846/stxb201708181492.
[44] SINSABAUGH R L, LAUBER C L, WEINTRAUB M N, et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters, 2008, 11(11): 1252-1264. DOI: 10.1111/j.1461-0248.2008.01245.x.
[45] 李明军, 喻理飞, 杜明凤, 等. 不同林龄杉木人工林植物-凋落叶-土壤 C、N、P 化学计量特征及互作关系[J]. 生态学报, 2018, 38(21): 7772-7781. DOI: 10.5846/stxb201708221509.
[46] 孙彩丽, 仇模升, 黄朝相, 等. 黔西南石漠化过程中土壤胞外酶活性及其化学计量变化特征[J]. 植物生态学报, 2022, 46(7): 834-845. DOI: 10.17521/cjpe.2021.0430.
[47] HILL B H, ELONEN C M, HERLIHY A T, et al. Microbial ecoenzyme stoichiometry, nutrient limitation, and organic matter decomposition in wetlands of the conterminous United States[J]. Wetlands Ecology and Management, 2018, 26(3): 425-439. DOI: 10.1007/s11273-017-9584-5.
[48] PENG X Q, WANG W. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China[J]. Soil Biology and Biochemistry, 2016, 98: 74-84. DOI:10.1016/j.soilbio.2016.04.008.
[49] CHANG E H, CHIU C Y. Changes in soil microbial community structure and activity in a cedar plantation invaded by moso bamboo[J]. Applied Soil Ecology, 2015, 91: 1-7. DOI: 10.1016/j.apsoil.2015.02.001.
[50] 姚宏佳, 王宝荣, 安韶山, 等. 黄土高原生物结皮形成过程中土壤胞外酶活性及其化学计量变化特征[J]. 干旱区研究, 2022, 39(2): 456-468. DOI: 10.13866/j.azr.2022.02.13.
[51] ZHANG Y L, CHEN L J, CHEN X H, et al. Response of soil enzyme activity to long-term restoration of desertified land[J]. Catena, 2015, 133: 64-70. DOI: 10.1016/j.catena.2015.04.012.
[52] 罗攀, 陈浩, 肖孔操, 等. 地形、树种和土壤属性对喀斯特山区土壤胞外酶活性的影响[J]. 环境科学, 2017, 38(6): 2577-2585. DOI: 10.13227/j.hjkx.201611078.
[53] BOERNER R E J, BRINKMAN J A, SMITH A. Seasonal variations in enzyme activity and organic carbon in soil of a burned and unburned hardwood forest[J]. Soil Biology and Biochemistry, 2005, 37(8): 1419-1426. DOI: 10.1016/j.soilbio.2004.12.012.
[54] ALLISON S D, WEINTRAUB M N, GARTNER T B, et al. Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function[M]// SHUKLA G, VARMA A. Soil Enzymology. Berlin: Springer, 2010: 229-243. DOI: 10.1007/978-3-642-14225-3-12.
[55] KIIKKILÄ O, KANERVA S, KITUNEN V, et al. Soil microbial activity in relation to dissolved organic matter properties under different tree species[J]. Plant and Soil, 2014, 377(1): 169-177. DOI: 10.1007/s11104-013-1988-2.
[1] YANG Pan, HUANG Ying, CEN Lijie, HUANG Li, WANG Haimiao. Distribution of C, N, P, K and Its Ecological Stoichiometry Characteristics in Alchornea trewioides [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 169-178.
[2] ZHAO Junyu, SHI Yuanyuan, QIN Zuoyu, PAN Bo, HUANG Xiaorui, TANG Jian. Analysis and Evaluation of Soil Fertility Obstacle Factors in Eucalyptus Plantation in South Subtropical Region [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 205-214.
[3] YAN Yan, HU Baoqing, HOU Manfu, SHI Shana. Suitability Assessment of Karst Rocky Desertification Control Patternsin Karst Counties of Guangxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 145-153.
[4] KANG Fuli, ZHU Guozheng, LIN Yu,HU Zhenxing, DENG Yingwei, FENG Yuneng, CHEN Shenghua,CHEN Fulin, LIU Ling. Effects on Rhizospheric Soil Enzyme Activities and Growth of Fortunella margarita Seedling Inoculated by Two Arbuscular Mycorrhizal Fungi in Two Types of Soil [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 104-112.
[5] LI Hui, YIN Hui, JIANG Zhong-cheng, YANG Qi-yong, WANG Yue. Remote Sensing of Rock Desertification and Soil Erosion in Typical Karst Area and the Key Problems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 133-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DONG Shulong, MA Jiangming, XIN Wenjie. Research Progress and Trend of Landscape Visual Evaluation —Knowledge Atlas Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 1 -13 .
[2] MA Qianran, WEI Duqu. Chaos Prediction of a Motor System with Two Linearly Coupled Reservoir Computers[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 1 -7 .
[3] YAN Minxiu, JIN Qisen. Construction of Multi-dimensional Chaotic Systems and Its Multi-channel Adaptive Control[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 8 -21 .
[4] ZHAO Wei, TIAN Shuai, ZHANG Qiang, WANG Yaoshen, WANG Sibo, SONG Jiang. Fritillaria ussuriensis Maxim Detection Model Based on Improved YOLOv5[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 22 -32 .
[5] GAO Fei, GUO Xiaobin, YUAN Dongfang, CAO Fujun. Improved PINNs Method for Solving the Convective Dominant Diffusion Equation with Boundary Layer[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 33 -50 .
[6] ZHOU Qiao, ZHAI Jiangtao, JIA Dongsheng, SUN Haoxiang. A Web Attack Detection Method Based on Convolutional Gated Recurrent Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 51 -61 .
[7] LIN Wancong, HAN Mingjie, JIN Ting. Multi-level Argument Position Classification Method via Data Augmentation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 62 -69 .
[8] WEN Xueyan, GU Xunkai, LI Zhen, HUANG Yinglai, HUANG Helin. Study of Idiom Reading Comprehension Methods Integrating Interpretation and Bidirectional Interaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 70 -79 .
[9] SONG Guanwu, CHEN Zhiming, LI Jianjun. Remote Sensing Image Classification with Cascade Attention Based on ResNet-50[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 80 -91 .
[10] XU Ziyu, WU Keqing. Uniqueness of Positive Solutions for Caputo Fractional Differential Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 92 -104 .