Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (6): 169-178.doi: 10.16088/j.issn.1001-6600.2022101404

Previous Articles     Next Articles

Distribution of C, N, P, K and Its Ecological Stoichiometry Characteristics in Alchornea trewioides

YANG Pan1, HUANG Ying1, CEN Lijie1, HUANG Li1, WANG Haimiao1,2*   

  1. 1. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China
  • Received:2022-10-14 Revised:2022-11-29 Published:2023-12-04

Abstract: Fixed-point sampling was conducted in the field at different periods to explore the change of carbon, nitrogen, phosphorus, potassium and the stoichiometry characteristics in the roots, stems and leaves in different phenological periods of the Alchornea trewioides which is known as the pioneer plant in karst area. The contents of soil carbon, nitrogen, phosphorus and potassium were measured and the content of total carbon (TC), total nitrogen (TN), total phosphorus (TP) and total potassium (TK) in plants and their relationships with soil nutrients were analyzed, and the correlation between plant element content and basic soil nutrients content were analyzed. The results showed that: (1) From florescence to abscission period, the variation range of TC, TN, TP and TK are 428.42~460.64 g/kg, 8.43~25.81 g/kg, 0.37~1.13 g/kg, and 2.82~6.32 g/kg, respectively The contents of TC, TN, TP and TK in leaves are the highest in all organs. At florescence, the contents of C, N, P and K in leaves were 446.75, 24.12, 1.13 and 6.32 g/kg, respectively. At fruit stage, the contents of C, N, P and K in leaves were 451.405、25.805、0.88 and 5.54 g/kg, respectively. In the abscission period, the contents of C, N, P and K in leaves were 460.635、19.02、1.07 and 5.52 g/kg, respectively. The contents of C, N and K in roots are more stable than those in stems and leaves, and the fluctuation of P content in roots is larger than that in stems and leaves. The variation coefficient of TC, TN, TK in different organs is stem >leaf > root, and the variation coefficient of TP is root > leaf > stem. The variation coefficient of TP in root is 39.1%, 250.04% higher than that of stem and 206.67% higher than that of leaf. (2) From florescence to abscission period, the variation range of mCmN, mCmP, mCmK and mNmP in roots, stems and leaves were 17.53~51.99, 396.86~1 179.7,71.16~154.88 and 13.28~29.59, respectively. Among all organs, the mass ratio of mCmN, mCmP and mCmK of leaves is the lowest. At florescence, the mass ratio of mN:mP is root > leaf > stem, in fruit and abscission period it is leaf > root and stem. The mass ratio of mNmP of roots, stems and leaves approaches 16 in abscission period.The mNmP mass ratio of the leaves of Alchornea trewioides were higher than 16, and the growth of the Alchornea trewioides is limited by P. The interaction effects of different organs and phenophases on mCmN, mCmP, mCmK and mNmP were significant. (3) Soil total nitrogen had an important effect on plant TN content, and soil available potassium had an important effect on plant TC and TK content, while soil total carbon and available phosphorus content had no significant effect on plant TC, TN, TP and TK.

Key words: ecological stoichiometry, phenology, karst areas, Alchornea trewioides

CLC Number:  S793.9; Q948
[1] 高小敏, 刘世荣, 王一, 等. 穿透雨减少和氮添加对毛竹叶片和细根化学计量学的影响[J]. 生态学报, 2021, 41(4): 1440-1450.
[2] FAN H B, WU J P, LIU W F, et al. Linkages of plant and soil C∶N∶P stoichiometry and their relationships to forest growth in subtropical plantations[J]. Plant and Soil, 2015, 392(1): 127-138.
[3] 周萍, 庄文化, 李明明, 等. 冰川退缩迹地植被原生演替初期关键种的碳氮磷生态化学计量特征[J]. 水土保持通报, 2021, 41(2): 1-9.
[4] LUO Y, PENG Q W, LI K H, et al. Patterns of nitrogen and phosphorus stoichiometry among leaf, stem and root of desert plants and responses to climate and soil factors in Xinjiang, China[J]. Catena, 2021, 199: 105100.
[5] 皮发剑, 袁丛军,喻理飞, 等.黔中天然次生林主要优势树种叶片生态化学计量特征[J]. 生态环境学报, 2016, 25(5): 801-807.
[6] WASSEN M J, OLDE VENTERINK H G M, DE SWART E O A M. Nutrient concentrations in mire vegetation as a measure of nutrient limitation in mire ecosystems[J]. Journal of Vegetation Science, 1995, 6(1): 5-16.
[7] TESSIER J T, RAYNAL D J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation[J]. Journal of Applied Ecology, 2003, 40(3): 523-534.
[8] 余杭, 高若允, 杨文嘉, 等. 干热河谷优势草本植物叶片、根系与土壤碳氮磷含量及其关系[J]. 应用与环境生物学报, 2022, 28(3): 727-735.
[9] 竺可桢, 宛敏渭. 物候学[M]. 北京: 科学出版社, 1973: 1-107.
[10] 莫非, 赵鸿, 王建永, 等. 全球变化下植物物候研究的关键问题[J]. 生态学报, 2011, 31(9): 2593-2601.
[11] 范广洲, 贾志军. 植物物候研究进展[J]. 干旱气象, 2010, 28(3): 250-255.
[12] 陈发军, 陈坤浩, 谢永贵, 等. 黔西北喀斯特生态系统中主要植物物候格局[J]. 山地学报, 2010, 28(6): 695-703.
[13] 赵亚芳, 徐福利, 王渭玲, 等. 华北落叶松根茎叶碳氮磷含量及其化学计量学特征的季节变化[J]. 植物学报, 2014, 49(5): 560-568.
[14] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937-3947.
[15] 张婷婷, 刘文耀, 黄俊彪, 等. 植物生态化学计量内稳性特征[J]. 广西植物, 2019, 39(5): 701-712.
[16] 陈洪松, 王克林. 西南喀斯特山区土壤水分研究[J]. 农业现代化研究, 2008, 29(6): 734-738.
[17] 李先琨, 何成新, 蒋忠诚. 岩溶脆弱生态区生态恢复、重建的原理与方法[J]. 中国岩溶, 2003, 22(1): 12-17.
[18] 梁亮, 刘志霄, 张代贵, 等.喀斯特地区石漠化治理的理论模式探讨[J].应用生态学报, 2007,18(3): 595-600.
[19] 吕仕洪, 陆树华, 李先琨, 等. 广西平果县石漠化地区立地划分与生态恢复试验初报[J]. 中国岩溶, 2005, 24(3): 196-201.
[20] 梅军林, 庄枫红, 马姜明, 等. 桂林喀斯特地区克隆生长红背山麻杆种群的点格局分析[J]. 生态学报, 2017, 37(9): 3164-3171.
[21] 莫凌, 黄玉清, 覃家科, 等. 西南喀斯特地区四种植物水分生理的初步研究[J]. 广西植物, 2008, 28(3): 402-406.
[22] 周俊妞, 梅军林, 马姜明, 等. 桂林喀斯特生境红背山麻杆克隆繁殖特征[J]. 广西师范大学学报(自然科学版), 2020, 38(3):110-116.
[23] 曾嘉庆, 祝佳杏, 王微, 等. 重庆喀斯特地区不同干扰生境中山麻杆种群的结构与格局[J]. 生态学杂志, 2016, 35(9): 2313-2320.
[24] 聂云鹏, 陈洪松, 王克林. 石灰岩地区连片出露石丛生境植物水分来源的季节性差异[J]. 植物生态学报, 2011, 35(10): 1029-1037.
[25] 郭柯, 刘长成, 董鸣. 我国西南喀斯特植物生态适应性与石漠化治理[J]. 植物生态学报, 2011, 35(10): 991-999.
[26] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
[27] 王增, 蒋仲龙, 刘海英, 等.油茶不同器官氮、磷、钾化学计量特征随年龄的变化[J]. 浙江农林大学学报, 2019, 36(2): 264-270.
[28] 吴家森, 蒋仲龙, 吕爱华, 等. 不同年龄杨梅各器官氮、磷、钾化学计量特征[J]. 江西农业大学学报, 2019, 41(3): 447-453.
[29] 杨柳生, 高若允, 俞陈辉, 等. 干热河谷失稳性坡面植物碳氮磷化学计量特征对土壤性质的响应[J]. 应用生态学报, 2022, 33(10): 2743-2752.
[30] 刘京涛, 李安琦, 孙景宽, 等. 黄河三角洲贝壳堤湿地优势灌木碳、氮、磷化学计量特征[J]. 生态学报, 2021, 41(10): 3805-3815.
[31] ZHAO H, XU L, WANG Q F, et al. Spatial patterns and environmental factors influencing leaf carbon content in the forests and shrublands of China[J]. Journal of Geographical Sciences, 2018, 28(6): 791-801.
[32] AERTS R. Nutrient resorption from senescing leaves of perennials: are there general patterns?[J]. Journal of Ecology, 1996, 84(4): 597-608.
[33] 秦海, 李俊祥, 高三平, 等. 中国660种陆生植物叶片8种元素含量特征[J]. 生态学报, 2010, 30(5): 1247-1257.
[34] 贺合亮, 阳小成, 李丹丹, 等. 青藏高原东部窄叶鲜卑花碳、氮、磷化学计量特征[J]. 植物生态学报, 2017, 41(1): 126-135.
[35] 樊月, 潘云龙, 陈志为, 等. 四种红树植物根茎叶的碳氮磷化学计量特征[J]. 生态学杂志, 2019, 38(4): 1041-1048.
[36] YAO F Y, CHEN Y H, YAN Z B, et al. Biogeographic patterns of structural traits and C∶N∶P stoichiometry of tree twigs in China's forests[J]. PLoS One, 2015, 10(2): e0116391.
[37] 杨永兴, 刘长娥, 杨杨, 等. 长江河口九段沙下沙湿地植物N、P、K的分布特征与季节动态[J]. 生态学杂志, 2010, 29(7): 1277-1288.
[38] ELSER J J, STERNER R W, GOROKHOVA E, et al. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters, 2000, 3: 540-550.
[39] LI T, ZHANG Z H, SUN J K, et al. Seasonal variation characteristics of C, N, and P stoichiometry and water use efficiency of Messerschmidia sibirica and its relationship with soil nutrients[J]. Frontiers in Ecology and Evolution, 2022, 10: 948682.
[40] 刘颖, 贺静雯, 余杭, 等. 干热河谷优势灌木细根、粗根与叶片养分(C、 N、 P)含量及化学计量比[J]. 山地学报, 2020, 38(5): 668-678.
[41] CHEN H S, ZHANG W, WANG K L, et al. Soil organic carbon and total nitrogen as affected by land use types in karst and non-karst areas of northwest Guangxi, China[J]. Journal of the Science of Food and Agriculture. 2012, 92(5): 1086-1093.
[42] MO Q F, LI Z A, SAYER E J, et al. Foliar phosphorus fractions reveal how tropical plants maintain photosynthetic rates despite low soil phosphorus availability[J]. Functional Ecology, 2019, 33(3): 503-513.
[43] MINDEN V, KLEYER M. Internal and external regulation of plant organ stoichiometry[J]. Plant Biology, 2014, 16(5): 897-907.
[44] WANG R Z, WANG X, JIANG Y, et al. Soil properties determine the elevational patterns of base cations and micronutrients in plant-soil system up to the upper limits of trees and shrubs[J]. Biogeosciences, 2018, 15(6): 1763-1774.
[45] 吴锡麟, 叶功富, 张尚炬, 等. 不同海岸梯度上短枝木麻黄小枝金属元素含量及其再吸收率动态[J]. 应用与环境生物学报, 2011, 17(5): 645-650.
[46] WANG M M, CHEN H S, ZHANG W, et al. Soil nutrients and stoichiometric ratios as affected by land use and lithology at county scale in a karst area, southwest China[J]. Science of the Total Environment, 2018, 619/620: 1299-1307.
[47] 曹建华, 袁道先, 潘根兴. 岩溶生态系统中的土壤[J]. 地球科学进展, 2003, 18(1): 37-44.
[48] 王霖娇, 汪攀, 盛茂银. 西南喀斯特典型石漠化生态系统土壤养分生态化学计量特征及其影响因素[J]. 生态学报, 2018, 38(18): 6580-6593.
[49] OLDROYD G E D, LEYSER O. A plant’s diet, surviving in a variable nutrient environment[J]. Science, 2020, 368(6486): eaba0196.
[50] 李艳琼, 邓湘雯, 易昌晏, 等. 湘西南喀斯特地区灌丛生态系统植物和土壤养分特征[J]. 应用生态学报, 2016, 27(4): 1015-1023.
[1] ZHOU Junniu, MEI Junlin, MA Jiangming, ZHANG Yajun, WANG Haimiao, JIAN Rui. Characteristics of Clonal Reproduction of Alchornea trewioides in Karst Region of Guilin, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 110-116.
[2] CHEN Ning, HE Mingxian, LI Yuhui, CHEN Jieping, LI Shilin, MA Jiangming. Optimization of Cutting Propagation Conditions for Alchornea trewioides by Orthogonal Design [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 128-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DONG Shulong, MA Jiangming, XIN Wenjie. Research Progress and Trend of Landscape Visual Evaluation —Knowledge Atlas Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 1 -13 .
[2] MA Qianran, WEI Duqu. Chaos Prediction of a Motor System with Two Linearly Coupled Reservoir Computers[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 1 -7 .
[3] YAN Minxiu, JIN Qisen. Construction of Multi-dimensional Chaotic Systems and Its Multi-channel Adaptive Control[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 8 -21 .
[4] ZHAO Wei, TIAN Shuai, ZHANG Qiang, WANG Yaoshen, WANG Sibo, SONG Jiang. Fritillaria ussuriensis Maxim Detection Model Based on Improved YOLOv5[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 22 -32 .
[5] GAO Fei, GUO Xiaobin, YUAN Dongfang, CAO Fujun. Improved PINNs Method for Solving the Convective Dominant Diffusion Equation with Boundary Layer[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 33 -50 .
[6] ZHOU Qiao, ZHAI Jiangtao, JIA Dongsheng, SUN Haoxiang. A Web Attack Detection Method Based on Convolutional Gated Recurrent Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 51 -61 .
[7] LIN Wancong, HAN Mingjie, JIN Ting. Multi-level Argument Position Classification Method via Data Augmentation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 62 -69 .
[8] WEN Xueyan, GU Xunkai, LI Zhen, HUANG Yinglai, HUANG Helin. Study of Idiom Reading Comprehension Methods Integrating Interpretation and Bidirectional Interaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 70 -79 .
[9] SONG Guanwu, CHEN Zhiming, LI Jianjun. Remote Sensing Image Classification with Cascade Attention Based on ResNet-50[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 80 -91 .
[10] XU Ziyu, WU Keqing. Uniqueness of Positive Solutions for Caputo Fractional Differential Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 92 -104 .