|
|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (6): 29-41.doi: 10.16088/j.issn.1001-6600.2024090802
陈建国1,2, 梁恩华1,2, 宋学伟1,2, 覃章荣1,2*
CHEN Jianguo1,2, LIANG Enhua1,2, SONG Xuewei1,2, QIN Zhangrong1,2*
摘要: 人眼中流动的房水是维持日常生理活动的关键,系统研究人眼房水动力学行为对理解眼病的发病机制及提高治疗效果等具有十分重要的现实意义。为了研究真实人眼中组织的个性化几何特征对房水动力学的影响,本文基于光学相干断层扫描技术与格子Boltzmann方法(lattice Boltzmann method, LBM)对真实人眼组织进行三维几何重建以及数值模拟,并获得一些有意义的结果。前房角大小与房水的流动模式具有密切的关系,前房角的减小会导致其流动模式改变以及流动速度的下降。当前房角从41°减小到9°后,房水的最大流速从9.65×10-5 m/s降低到3.10×10-5 m/s。角膜凹陷不会改变房水的流动模式,但是会降低房水流动速度。凹陷距离从0 mm增加到0.7 mm时,房水最大流速从5.93×10-5 m/s降低到1.45×10-5 m/s。瞳孔异位会导致房水流动在前房腔内的不对称分布,伴随前房角的减小,房水的流动模式会变得更加复杂。
中图分类号: R318;TP391.41
| [1] CARREON T, VAN DER MERWE E, FELLMAN R L, et al. Aqueous outflow-A continuum from trabecular meshwork to episcleral veins[J]. Progress in Retinal and Eye Research, 2017, 57: 108-133. DOI: 10.1016/j.preteyeres.2016.12.004. [2] 钱秀清, 宋红芳, 刘志成. 青光眼生物力学研究进展[J]. 科技导报, 2018, 36(13): 30-38. DOI: 10.3981/j.issn.1000-7857.2018.13.004. [3] TORIS C B, GAGRANI M, GHATE D. Current methods and new approaches to assess aqueous humor dynamics[J]. Expert Review of Ophthalmology, 2021, 16(3): 139-160. DOI: 10.1080/17469899.2021.1902308. [4] CORONEO M T, GRATEROL-NISI G, MAVER E, et al. Aqueous humor circulation in the era of minimally invasive surgery for glaucoma[J]. Annals of Biomedical Engineering, 2024, 52(4): 898-907. DOI: 10.1007/s10439-023-03427-3. [5] BASSON N, ALIMAHOMED F, GEOGHEGAN P H, et al. An aqueous humour fluid dynamic study for normal and glaucomatous eye conditions[C] //2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Piscataway, NJ: IEEE, 2022: 3963-3966. DOI: 10.1109/EMBC48229.2022.9871009. [6] CANNING C R, GREANEY M J, DEWYNNE J N, et al. Fluid flow in the anterior chamber of a human eye[J]. IMA Journal of Mathematics Applied in Medicine and Biology, 2002, 19(1): 31-60. [7] FITT A D, GONZALEZ G. Fluid mechanics of the human eye: aqueous humour flow in the anterior chamber[J]. Bulletin of Mathematical Biology, 2006, 68(1): 53-71. DOI: 10.1007/s11538-005-9015-2. [8] OOI E H, NG E Y. Simulation of aqueous humor hydrodynamics in human eye heat transfer[J]. Computers in Biology and Medicine, 2008, 38(2): 252-262. DOI: 10.1016/j.compbiomed.2007.10.007. [9] KARAMPATZAKIS A, SAMARAS T. Numerical model of heat transfer in the human eye with consideration of fluid dynamics of the aqueous humour[J]. Physics in Medicine and Biology, 2010, 55(19): 5653-5665. DOI: 10.1088/0031-9155/55/19/003. [10] KUMAR S, ACHARYA S, BEUERMAN R, et al. Numerical solution of ocular fluid dynamics in a rabbit eye: parametric effects[J]. Annals of Biomedical Engineering, 2006, 34(3): 530-544. DOI: 10.1007/s10439-005-9048-6. [11] YAN Y W, SHI H H, ZHAO Y L, et al. Correlation study of biomechanical changes between diabetic eye disease and glaucoma using finite element model of human eye with different iris-lens channel distances[J]. Medical Engineering & Physics, 2022, 109: 103910. DOI: 10.1016/j.medengphy.2022.103910. [12] AMINI R, BAROCAS V H. Reverse pupillary block slows iris contour recovery from corneoscleral indentation[J]. Journal of Biomechanical Engineering, 2010, 132(7): 071010. DOI: 10.1115/1.4001256. [13] HEYS J J, BAROCAS V H, TARAVELLA M J. Modeling passive mechanical interaction between aqueous humor and iris[J]. Journal of Biomechanical Engineering, 2001, 123(6): 540-547. DOI: 10.1115/1.1411972. [14] WANG W J, QIAN X Q, SONG H F, et al. Fluid and structure coupling analysis of the interaction between aqueous humor and iris[J]. Biomedical Engineering Online, 2016, 15(S2): 133. DOI: 10.1186/s12938-016-0261-3. [15] ZUHAILA I, JIANN L Y, SHARIDAN S, et al. Aqueous humour dynamics in anterior chamber under influence of Cornea indentation[J]. Journal of Physics: Conference Series, 2017, 822: 012023. DOI: 10.1088/1742-6596/822/1/012023. [16] 陈伟, 张向东, 余涵, 等. 虹膜膨隆对房水流动影响的数值模拟分析[J]. 眼科新进展, 2017, 37(1): 72-76. DOI: 10.13389/j.cnki.rao.2017.0020. [17] TAMM E R, BRAUNGER B M, FUCHSHOFER R. Intraocular pressure and the mechanisms involved in resistance of the aqueous humor flow in the trabecular meshwork outflow pathways[J]. Progress in Molecular Biology and Translational Science, 2015, 134: 301-314. DOI: 10.1016/bs.pmbts.2015.06.007. [18] MERCHANT B M, HEYS J J. Effects of variable permeability on aqueous humor outflow[J]. Applied Mathematics and Computation, 2008, 196(1): 371-380. DOI: 10.1016/j.amc.2007.06.008. [19] LIN C W, YUAN F. Numerical simulations of ethacrynic acid transport from precorneal region to trabecular meshwork[J]. Annals of Biomedical Engineering, 2010, 38(3): 935-944. DOI: 10.1007/s10439-010-9947-z. [20] CHEN H, ZHANG F, HUANG Y K, et al. Numerical investigation of topical drug transport in the anterior human eye[J]. International Journal of Heat and Mass Transfer, 2015, 85: 356-366. DOI: 10.1016/j.ijheatmasstransfer.2015.01.142. [21] FERREIRA J A, DE OLIVEIRA P, DA SILVA P M, et al. Numerical simulation of aqueous humor flow: from healthy to pathologic situations[J]. Applied Mathematics and Computation, 2014, 226: 777-792. DOI: 10.1016/j.amc.2013.10.070. [22] FERNÁNDEZ-VIGO J I, MARCOS A C, AGUJETAS R, et al. Computational simulation of aqueous humour dynamics in the presence of a posterior-chamber versus iris-fixed phakic intraocular lens[J]. PLoS One, 2018, 13(8): e0202128. DOI: 10.1371/journal.pone.0202128. [23] 高乐, 尹海国, 蒋慧莉, 等. 人工晶体开孔孔径对晶体变形及前房内流场影响的数值模拟研究[J]. 医用生物力学, 2023, 38(4): 690-696. DOI: 10.16156/j.1004-7220.2023.04.008. [24] QIN Z R, MENG L J, YANG F, et al. Aqueous humor dynamics in human eye: a lattice Boltzmann study[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 5006-5028. DOI: 10.3934/mbe.2021255. [25] HUANG G, YE Q L, TANG H, et al. A GPU accelerated study of aqueous humor dynamics in human eyes using the lattice Boltzmann method[J]. Mathematical Biosciences and Engineering, 2023, 20(5): 8476-8497. DOI: 10.3934/mbe.2023372. [26] SU L, JU Y, LIU X R. Quantitative modeling and simulation of anterior chamber in OCT images[C] //2010 IEEE Fifth International Conference on Bio-Inspired Computing: the ories and Applications (BIC-TA). Piscataway, NJ: IEEE, 2010: 1314-1318. DOI: 10.1109/BICTA.2010.5645072. [27] TANG H, QIN Z R, WEN B H. Geometric model and numerical study of aqueous humor hydrodynamics in the human eye[J]. Computational and Mathematical Methods in Medicine, 2022, 2022(1): 4756728. DOI: 10.1155/2022/4756728. [28] 管羿鸣, 季婷婷, 杨鑫宇, 等. 液滴在化学异构表面上侧向弹跳的计算机模拟研究[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 90-100. DOI: 10.16088/j.issn.1001-6600.2020031201. [29] 赵金想, 陈燕雁, 覃章荣, 等. 一种基于化学势LBM多相流模型的改进方法[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 87-95. DOI: 10.16088/j.issn.1001-6600.2020.02.010. [30] 李若桐, 钟兴国, 刘起霖, 等. 基于格子Boltzmann方法的自由能密度模型[J]. 广西师范大学学报(自然科学版), 2024,42(4): 90-99. DOI: 10.16088/j.issn.1001-6600.2023080803. [31] 杨勇, 陈丽萍, 龚延风, 等. 基于多尺度方法研究微生物生长对多孔介质渗透率的影响[J]. 环境工程, 2023, 41(4): 49-54, 153. DOI: 10.13205/j.hjgc.202304007. [32] 王俊权, 居隆, 陈松泽, 等. 微孔中反应流体黏性指进混合过程的数值研究[J]. 工程热物理学报, 2023, 44(2): 540-549. [33] SCHMITT J M. Optical coherence tomography (OCT): a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4): 1205-1215. DOI: 10.1109/2944.796348. [34] HUANG Y, WANG W X, LI W S. Anisotropic filter based modified canny algorithm[C] //Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007). Piscataway, NJ: IEEE, 2007: 736-740. DOI: 10.1109/FSKD.2007.175. [35] GENG X, CHEN K, HU X G. An improved Canny edge detection algorithm for color image[C] //IEEE 10th International Conference on Industrial Informatics. Piscataway, NJ: IEEE, 2012: 113-117. DOI: 10.1109/INDIN.2012.6301061. [36] TRIPATHI R C, TRIPATHI B J. Anatomy of the human eye, orbit, and adnexa[M] //The Eye. Amsterdam: Elsevier, 1984: 1-268. DOI: 10.1016/b978-0-12-206901-7.50006-3. [37] 洪佳旭,刘笑宇,樊瑜波,等.基于光学相干衍射技术的活体人眼前节图像三维重建研究[C] //International Science and Engineering Center, Hong Kong,Wuhan Institute of Technology, China.Proceedings of 2010 First International Conference on Cellular,Molecular Biology, Biophysics and Bioengineering(Volume 4).复旦大学附属眼耳鼻喉科医院眼科,2010:511-518. [38] 姚南生, 屈景怡. 一种双向层间轮廓线线性插值方法[J]. 微机发展, 2004, 14(4): 28-30. DOI: 10.3969/j.issn.1673-629X.2004.04.009. [39] MACKNIGHT A D, MCLAUGHLIN C W, PEART D, et al. Formation of the aqueous humor[J]. Clinical and Experimental Pharmacology and Physiology, 2000, 27(1/2): 100-106. DOI: 10.1046/j.1440-1681.2000.03208.x. [40] MARTÍNEZ SÁNCHEZ G J, ESCOBAR DEL POZO C, ROCHA MEDINA J A, et al. Numerical simulation of the aqueous humor flow in the eye drainage system; a healthy and pathological condition comparison[J]. Medical Engineering & Physics, 2020, 83: 82-92. DOI: 10.1016/j.medengphy.2020.07.010. [41] GUO Z L, ZHAO T S. A lattice Boltzmann model for convection heat transfer in porous media[J]. Numerical Heat Transfer, Part B: Fundamentals, 2005, 47(2): 157-177. DOI: 10.1080/10407790590883405. [42] GUO Z L, ZHENG C G, SHI B C. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method[J]. Chinese Physics, 2002, 11(4): 366-374. DOI: 10.1088/1009-1963/11/4/310. [43] GUO Z L, ZHENG C G, SHI B C. Discrete lattice effects on the forcing term in the lattice Boltzmann method[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2002, 65(4 Pt 2B): 046308. DOI: 10.1103/PhysRevE.65.046308. [44] GOEL M, PICCIANI R G, LEE R K, et al. Aqueous humor dynamics: a review[J]. The Open Ophthalmology Journal, 2010, 4: 52-59. DOI: 10.2174/1874364101004010052. [45] ZHAO Y B, CHEN B, LI D. Optimization of surgical protocol for laser iridotomy based on the numerical simulation of aqueous flow[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 7405-7420. DOI: 10.3934/mbe.2019370. [46] BERGMAN T L, DEWITT D P, INCROPERA F P, et al. Fundamentals of heat and mass transfer[M]. 7th ed. New York: John Wiley & Sons, 2011. [47] HEYS J J, BAROCAS V H. A boussinesq model of natural convection in the human eye and the formation of Krukenberg’s spindle[J]. Annals of Biomedical Engineering, 2002, 30(3): 392-401. DOI: 10.1114/1.1477447. [48] SWARBRICK H A, WONG G, O’LEARY D J. Corneal response to orthokeratology[J]. Optometry and Vision Science, 1998, 75(11): 791-799. DOI: 10.1097/00006324-199811000-00019. |
| [1] | 李好, 何冰. 凹槽结构表面液滴弹跳行为研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 42-53. |
| [2] | 凌福, 张永刚, 闻炳海. 基于插值的多相流格子Boltzmann方法曲线边界算法研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 54-68. |
| [3] | 邓金娜, 刘秋梅, 陈一鸣, 杨爱民. 两种黏弹性运动板的数值模拟与稳定性分析[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 128-139. |
| [4] | 李若桐, 钟兴国, 刘起霖, 闻炳海. 基于格子Boltzmann方法的自由能密度模型[J]. 广西师范大学学报(自然科学版), 2024, 42(4): 90-99. |
| [5] | 张琬婧, 林支桂. 增长区域上一类寄生虫-宿主模型的Turing不稳定[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 132-139. |
| [6] | 管羿鸣, 季婷婷, 杨鑫宇, 闻炳海. 液滴在化学异构表面上侧向弹跳的计算机模拟研究[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 90-100. |
| [7] | 黄春贤, 周效良. 含等级治疗率与不完全康复率的SIRS模型的分岔分析[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 74-81. |
| [8] | 凌风如, 张超英, 陈燕雁, 覃章荣. LBM中基于半程反弹的统一边界条件研究[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 70-78. |
| [9] | 冯金明,李遵先. 一类具扩散的传染病模型的稳定性分析[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 63-68. |
| [10] | 陈春燕, 许志鹏, 邝华. 连续记忆效应的交通流跟驰建模与稳定性分析[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 14-21. |
| [11] | 李谊纯, 董德信, 王一兵. 北仑河口及其邻近海域物质输运滞留时间研究[J]. 广西师范大学学报(自然科学版), 2015, 33(2): 56-63. |
| [12] | 覃章荣, 张超英, 丘滨, 李圆圆, 莫刘刘. 基于CUDA的格子Boltzmann数值模拟加速实现[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 18-24. |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |