广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (6): 42-53.doi: 10.16088/j.issn.1001-6600.2024122402

• 物理与电子工程 • 上一篇    下一篇

凹槽结构表面液滴弹跳行为研究

李好, 何冰*   

  1. 广西师范大学 计算机科学与工程学院,广西 桂林 541004
  • 收稿日期:2024-12-24 修回日期:2025-03-27 发布日期:2025-11-19
  • 通讯作者: 何冰(1975—),女,广西钟山人,广西师范大学副教授,博士。Email: hebing@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(12272100,12062005,81860635);广西自然科学基金(2024JJA110085)

Droplet Rebound Behavior on Grooves Surface

LI Hao, HE Bing*   

  1. School of Computer Science and Engineering, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2024-12-24 Revised:2025-03-27 Published:2025-11-19

摘要: 对液滴弹跳的认识在喷墨打印、药物输运、微流控等技术领域中发挥着重大指导作用,因此受到人们的广泛关注。具有渐变间距的凹槽结构表面形成的润湿梯度使得撞击其上的液滴呈现复杂的不同方向的弹跳行为,数值模拟是研究该现象的有效方法。本文采用基于化学势模型的晶格Boltzmann方法,对液滴撞击相同间距和渐变间距的凹槽表面所产生的弹跳行为进行建模并对比分析,通过进一步分析液滴在弹跳过程中的接触角、接触线、受力、内部动量以及速度矢量的变化讨论导致反向弹跳的原因。结果表明,液滴在不对称凹槽上会产生一系列不对称形变,在韦伯数为42.4时,液滴完成铺展,收缩后趋向于亲水方向进行顺润湿梯度弹跳,而当液滴韦伯数增大到53时,浸入凹槽中液体更深且不对称性更为显著,导致右侧接触线扎钉,由此产生的迟滞力促使界面上的部分液滴收缩后重心向右迁移,最终导致液滴逆表面润湿梯度反弹。该研究可对设计操纵液滴运动的微结构表面具有指导作用。

关键词: 晶格Boltzmann方法, 数值模拟, 异构表面, 润湿性, 液滴弹跳

Abstract: The understanding of droplet bouncing behavior, which attracts widespread attention, has played a significant role in guiding technologies such as inkjet printing, drug delivery, and microfluidics. The wetting gradient formed by grooved surfaces with varying spacing causes droplets to exhibit complex bouncing behaviors in different directions. Numerical simulations are employed to study this phenomenon. In this work, the Lattice Boltzmann method based on the chemical potential model is used to model and to compare the bouncing behaviors of droplets impacting surfaces with both uniform and gradient-spaced grooves. The droplet’s contact angle, contact line, forces, internal momentum, and velocity vectors during the bouncing process are analyzed to investigate the causes of reverse bouncing. The results indicate that the droplet undergoes a series of asymmetric deformations on the asymmetric groove. When the Weber number of the droplet is 42.4, the droplet completes spreading and tends to bounce along the wettability gradient toward the hydrophilic direction after contraction. However, when the Weber number increases to 117.8, the liquid penetrates deeper into the groove, and the asymmetry becomes more pronounced. This leads to the pinning of the right contact line, and the resulting hysteresis force causes part of the droplet on the interface to contract and shift its center of mass to the right. Consequently, the droplet rebounds against the surface wetting gradient. This study provides insights for the design of microstructured surfaces that manipulate droplet motion.

Key words: lattice Boltzmann method, numerical simulation, heterogeneous surfaces, wettability, droplet bouncing

中图分类号:  O35

[1] XU W H, ZHENG H X, LIU Y, et al. A droplet-based electricity generator with high instantaneous power density[J]. Nature, 2020, 578(7795): 392-396. DOI: 10.1038/s41586-020-1985-6.
[2] GE P, WANG S L, ZHANG J H, et al. Micro-/nanostructures meet anisotropic wetting: from preparation methods to applications[J]. Materials Horizons, 2020, 7(10): 2566-2595. DOI: 10.1039/D0MH00768D.
[3] DING Y, HOWES P D, DE MELLO A J. Recent advances in droplet microfluidics[J]. Analytical Chemistry, 2020, 92(1): 132-149. DOI: 10.1021/acs.analchem.9b05047.
[4] ZHENG Y M, GAO X F, JIANG L. Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter, 2007, 3(2): 178-182. DOI: 10.1039/b612667g.
[5] WANG L X, ZHOU Q. Surface hydrophobicity of slippery zones in the pitchers of two Nepenthes species and a hybrid[J]. Scientific Reports, 2016, 6: 19907. DOI: 10.1038/srep19907.
[6] ZHENG Y M, BAI H, HUANG Z B, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281): 640-643. DOI: 10.1038/nature08729.
[7] MAYAMA H. Secret of Lotus leaf: importance of double roughness structures for super water-repellency[J]. Journal of Photopolymer Science and Technology, 2018, 31(6): 705-710. DOI: 10.2494/photopolymer.31.705.
[8] LI Y X, CUI Z H, LI G Q, et al. Directional and adaptive oil self-transport on a multi-bioinspired grooved conical spine[J]. Advanced Functional Materials, 2022, 32(27): 2201035. DOI: 10.1002/adfm.202201035.
[9] TANG X, TIAN Y, TIAN X W, et al. Design of multi-scale textured surfaces for unconventional liquid harnessing[J]. Materials Today, 2021, 43: 62-83. DOI: 10.1016/j.mattod.2020.08.013.
[10] HU Z F, CHU F Q, SHAN H, et al. Understanding and utilizing droplet impact on superhydrophobic surfaces: phenomena, mechanisms, regulations, applications, and beyond[J]. Advanced Materials, 2024, 36(11): 2310177. DOI: 10.1002/adma. 202310177.
[11] QIAN L J, HUO B J, CHEN Z L, et al. Droplet bouncing on moving superhydrophobic groove surfaces[J]. International Journal of Multiphase Flow, 2023, 165: 104454. DOI: 10.1016/j.ijmultiphaseflow.2023.104454.
[12] SONG J L, GAO M Q, ZHAO C L, et al. Large-area fabrication of droplet pancake bouncing surface and control of bouncing state[J]. ACS Nano, 2017, 11(9): 9259-9267. DOI: 10.1021/acsnano.7b04494.
[13] VAIKUNTANATHAN V, KANNAN R, SIVAKUMAR D. Impact of water drops onto the junction of a hydrophobic texture and a hydrophilic smooth surface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 369(1/2/3): 65-74. DOI: 10.1016/j.colsurfa.2010.07.034.
[14] VAIKUNTANATHAN V, SIVAKUMAR D. Maximum spreading of liquid drops impacting on groove-textured surfaces: effect of surface texture[J]. Langmuir, 2016, 32(10): 2399-2409. DOI: 10.1021/acs.langmuir.5b04639.
[15] TAO R, LIANG G Q, DOU B H, et al. Oblique pancake bouncing[J]. Cell Reports Physical Science, 2022, 3(1): 100721. DOI: 10.1016/j.xcrp.2021.100721.
[16] YADA S, BAGHERI S, HANSSON J, et al. Droplet leaping governs microstructured surface wetting[J]. Soft Matter, 2019, 15(46): 9528-9536. DOI: 10.1039/c9sm01854a.
[17] ZHANG B, LEI Q, WANG Z K, et al. Droplets can rebound toward both directions on textured surfaces with a wettability gradient[J]. Langmuir, 2016, 32(1): 346-351. DOI: 10.1021/acs.langmuir.5b04365.
[18] ZHAO J Y, CHEN S. Following or against topographic wettability gradient: movements of droplets on a micropatterned surface[J]. Langmuir, 2017, 33(21): 5328-5335. DOI: 10.1021/acs.langmuir.7b00438.
[19] YUN S. Ellipsoidal drop impact on a single-ridge superhydrophobic surface[J]. International Journal of Mechanical Sciences, 2021, 208: 106677. DOI: 10.1016/j.ijmecsci.2021.106677.
[20] ZHAO J Y, CHEN S, LIU Y. Spontaneous wetting transition of droplet coalescence on immersed micropillared surfaces[J]. Applied Mathematical Modelling, 2018, 63: 390-404. DOI: 10.1016/j.apm.2018.06.041.
[21] YUAN Z C, MATSUMOTO M, KUROSE R. Directional rebounding of a droplet impinging hydrophobic surfaces with roughness gradients[J]. International Journal of Multiphase Flow, 2021, 138: 103611. DOI: 10.1016/j.ijmultiphaseflow.2021.103611.
[22] YUAN Z C, MATSUMOTO M, KUROSE R. Numerical study of droplet impingement on surfaces with hierarchical structures[J]. International Journal of Multiphase Flow, 2022, 147: 103908. DOI: 10.1016/j.ijmultiphaseflow.2021.103908.
[23] 张建民, 何小泷. 格子玻尔兹曼方法在多相流中的应用[C] //第十四届全国水动力学学术会议暨第二十八届全国水动力学研讨会文集(上册). 长春, 2017: 93-110.
[24] CHEN S Y, DOOLEN G D. Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics, 1998, 30: 329-364. DOI: 10.1146/annurev.fluid.30.1.329.
[25] AIDUN C K, CLAUSEN J R. Lattice-Boltzmann method for complex flows[J]. Annual Review of Fluid Mechanics, 2010, 42: 439-472. DOI: 10.1146/annurev-fluid-121108-145519.
[26] KRÜGER T, KUSUMAATMAJA H, KUZMIN A, et al. The lattice Boltzmann method[J]. Springer International Publishing, 2017, 10(978-3): 4-15.
[27] JAMET D, TORRES D, BRACKBILL J U. On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method[J]. Journal of Computational Physics, 2002, 182(1): 262-276. DOI: 10.1006/jcph.2002.7165.
[28] WEN B H, ZHOU X, HE B, et al. Chemical-potential-based lattice Boltzmann method for nonideal fluids[J]. Physical Review E, 2017, 95: 063305. DOI: 10.1103/PhysRevE.95.063305.
[29] SWIFT M R, OSBORN W R, YEOMANS J M. Lattice Boltzmann simulation of nonideal fluids[J]. Physical Review Letters, 1995, 75(5): 830-833. DOI: 10.1103/PhysRevLett.75.830.
[30] ZHENG H W, SHU C, CHEW Y T. A lattice Boltzmann model for multiphase flows with large density ratio[J]. Journal of Computational Physics, 2006, 218(1): 353-371. DOI: 10.1016/j.jcp.2006.02.015.
[31] WEN B H, QIN Z R, ZHANG C Y, et al. Thermodynamic-consistent lattice Boltzmann model for nonideal fluids[J]. EPL (Europhysics Letters), 2015, 112(4): 44002. DOI: 10.1209/0295-5075/112/44002.
[32] 闻炳海, 张超英, 方海平. 晶格Boltzmann方法中流体力的计算[J]. 中国科学: 物理学 力学 天文学, 2017, 47(7): 070012. DOI: 10.1360/SSPMA2016-00404.
[33] LIU Y S, YAO Y C, LI Q Y, et al. Contact angle measurement on curved wetting surfaces in multiphase lattice Boltzmann method[J]. Langmuir, 2023, 39(8): 2974-2984. DOI: 10.1021/acs.langmuir.2c02763.
[34] 刘阳莎. 基于晶格Boltzmann方法的曲面接触角测量算法研究[D]. 桂林: 广西师范大学, 2023. DOI: 10.27036/d.cnki.ggxsu.2023.001941.
[35] CHEN L, KANG Q J, MU Y T, et al. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications[J]. International Journal of Heat and Mass Transfer, 2014, 76: 210-236. DOI: 10.1016/j.ijheatmasstransfer.2014.04.032.
[36] GUO C F, ZHAO D Y, SUN Y J, et al. Droplet impact on anisotropic superhydrophobic surfaces[J]. Langmuir, 2018, 34(11): 3533-3540. DOI: 10.1021/acs.langmuir.7b03752.
[37] WANG S, LI H L, DUAN H, et al. Directed motion of an impinging water droplet: seesaw effect[J]. Journal of Materials Chemistry A, 2020, 8(16): 7889-7896. DOI: 10.1039/D0TA00037J.
[1] 陈建国, 梁恩华, 宋学伟, 覃章荣. 基于OCT图像三维重建的人眼房水动力学LBM模拟[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 29-41.
[2] 凌福, 张永刚, 闻炳海. 基于插值的多相流格子Boltzmann方法曲线边界算法研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 54-68.
[3] 邓金娜, 刘秋梅, 陈一鸣, 杨爱民. 两种黏弹性运动板的数值模拟与稳定性分析[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 128-139.
[4] 张琬婧, 林支桂. 增长区域上一类寄生虫-宿主模型的Turing不稳定[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 132-139.
[5] 邵玉馥, 季婷婷, 姚怡辰, 闻炳海. 基于晶格Boltzmann方法研究曲面上接触角的测量算法[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 44-53.
[6] 管羿鸣, 季婷婷, 杨鑫宇, 闻炳海. 液滴在化学异构表面上侧向弹跳的计算机模拟研究[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 90-100.
[7] 黄春贤, 周效良. 含等级治疗率与不完全康复率的SIRS模型的分岔分析[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 74-81.
[8] 赵金想, 陈燕雁, 覃章荣, 张超英. 一种基于化学势LBM多相流模型的改进方法[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 87-95.
[9] 凌风如, 张超英, 陈燕雁, 覃章荣. LBM中基于半程反弹的统一边界条件研究[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 70-78.
[10] 邱文, 叶勇, 周思浩, 闻炳海. 基于晶格Boltzmann方法研究微液滴形变中接触角[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 27-37.
[11] 冯金明,李遵先. 一类具扩散的传染病模型的稳定性分析[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 63-68.
[12] 黄兵方,闻炳海,邱文,赵琬玲,陈燕雁. 基于晶格Boltzmann方法的接触角实时测量研究[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 34-43.
[13] 陈春燕, 许志鹏, 邝华. 连续记忆效应的交通流跟驰建模与稳定性分析[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 14-21.
[14] 李谊纯, 董德信, 王一兵. 北仑河口及其邻近海域物质输运滞留时间研究[J]. 广西师范大学学报(自然科学版), 2015, 33(2): 56-63.
[15] 张超英, 黎槟华, 覃章荣. 基于CUDA的晶格Boltzmann并行算法的综合优化设计[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 142-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘晓娟, 林璐, 胡郁葱, 潘雷. 站点周边用地类型对地铁乘车满意度影响研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 1 -12 .
[2] 韩华彬, 高丙朋, 蔡鑫, 孙凯. 基于HO-CNN-BiLSTM-Transformer模型的风机叶片结冰故障诊断[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 13 -28 .
[3] 陈建国, 梁恩华, 宋学伟, 覃章荣. 基于OCT图像三维重建的人眼房水动力学LBM模拟[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 29 -41 .
[4] 凌福, 张永刚, 闻炳海. 基于插值的多相流格子Boltzmann方法曲线边界算法研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 54 -68 .
[5] 解盛, 马海菲, 张灿龙, 王智文, 韦春荣. 基于多分辨率特征定位的跨模态行人检索方法[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 69 -79 .
[6] 魏梓书, 陈志刚, 王衍学, 哈斯铁尔·马德提汗. 基于SBSI-YOLO11的轻量化轴承外观缺陷检测算法[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 80 -91 .
[7] 易见兵, 胡雅怡, 曹锋, 李俊, 彭鑫, 陈鑫. 融合动态通道剪枝的轻量级CT图像肺结节检测网络设计[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 92 -106 .
[8] 卢梦筱, 张阳春, 章晓峰. 基于分布式强化学习方法解决后继特征中的低估问题[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 107 -119 .
[9] 姜云卢, 卢辉杰, 黄晓雯. 惩罚加权复合分位数回归方法在固定效应面板数据中的应用研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 120 -127 .
[10] 邓金娜, 刘秋梅, 陈一鸣, 杨爱民. 两种黏弹性运动板的数值模拟与稳定性分析[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 128 -139 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发