|
|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (6): 128-139.doi: 10.16088/j.issn.1001-6600.2024120304
邓金娜1, 刘秋梅1*, 陈一鸣2, 杨爱民1
DENG Jinna1, LIU Qiumei1*, CHEN Yiming2, YANG Aimin1
摘要: 为研究2种黏弹性轴向运动板的动态响应,采用变分数阶模型推导轴向运动板的控制方程,将移位Bernstein多项式作为基函数来求解变分数阶微分方程,导出移位Bernstein多项式的算子矩阵,控制方程用矩阵乘积的形式表示。通过数值算例验证算法的可行性。比较陶瓷(ceramic)板和聚对苯二甲酸乙二醇酯(PET)板在简谐载荷下的位移,分析轴向移动速度对轴向黏弹性板位移的影响,并比较不同材料板在不同厚度变化下的位移变化。研究结果初步突破求解黏弹性运动板的变分数阶模型,为黏弹性结构的研究提供理论依据。
中图分类号: O221
| [1] TANG Y Q, CHEN L Q. Stability analysis and numerical confirmation in parametric resonance of axially moving viscoelastic plates with time-dependent speed[J]. European Journal of Mechanics-A/Solids, 2013, 37: 106-121. DOI: 10.1016/j.euromechsol.2012.05.010. [2] SHU Z, YOU R K, ZHOU Y. Viscoelastic materials for structural dampers: a review[J]. Construction and Building Materials, 2022, 342: 127955. DOI: 10.1016/j.conbuildmat.2022.127955. [3] 王磊, 陈一鸣, 冯君尧. 分数阶黏弹性Euler-Bernoulli梁的数值分析[J]. 辽宁工程技术大学学报(自然科学版), 2020, 39(5): 471-476. [4] SHAO X D, HE G, SHEN X J, et al. Conceptual design of 1 000 m scale steel-UHPFRC composite truss arch bridge[J]. Engineering Structures, 2021, 226: 111430. DOI: 10.1016/j.engstruct.2020.111430. [5] 冯君尧, 陈一鸣, 王磊. 黏弹性旋转梁的分数阶模型及其数值算法[J]. 辽宁工程技术大学学报(自然科学版), 2020, 39(3): 287-292. [6] ROUZEGAR J, VAZIRZADEH M, HEYDARI M H. A fractional viscoelastic model for vibrational analysis of thin plate excited by supports movement[J]. Mechanics Research Communications, 2020, 110: 103618. DOI: 10.1016/j.mechrescom.2020.103618. [7] NWAGOUM TUWA P R, MIWADINOU C H, MONWANOU A V, et al. Chaotic vibrations of nonlinear viscoelastic plate with fractional derivative model and subjected to parametric and external excitations[J]. Mechanics Research Communications, 2019, 97: 8-15. DOI: 10.1016/j.mechrescom.2019.04.001. [8] 徐志刚. 三类微分方程的Euler小波数值解法[D]. 抚州: 东华理工大学, 2021. DOI: 10.27145/d. cnki.ghddc.2021.000320. [9] 李静, 朱莉. 分数阶变系数微分方程的Euler小波解法[J]. 宁波工程学院学报, 2019, 31(1): 1-6. [10] SUN L, CHEN Y M, DANG R Q, et al. Shifted Legendre polynomials algorithm used for the numerical analysis of viscoelastic plate with a fractional order model[J]. Mathematics and Computers in Simulation, 2022, 193: 190-203. DOI: 10.1016/j.matcom.2021.10.007. [11] LOGHMAN E, KAMALI A, BAKHTIARI-NEJAD F, et al. Nonlinear free and forced vibrations of fractional modeled viscoelastic FGM micro-beam[J]. Applied Mathematical Modelling, 2021, 92: 297-314. DOI: 10. 1016/j.apm.2020.11.011. [12] CAO J W, CHEN Y M, WANG Y H, et al. Shifted Legendre polynomials algorithm used for the dynamic analysis of PMMA viscoelastic beam with an improved fractional model[J]. Chaos, Solitons & Fractals, 2020, 141: 110342. DOI: 10.1016/j.chaos.2020.110342. [13] CHEN Y M, WEI Y Q, LIU D Y, et al. Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets[J]. Applied Mathematics Letters, 2015, 46: 83-88. DOI: 10.1016/j.aml.2015.02.010. [14] HAN W, CHEN Y M, LIU D Y, et al. Numerical solution for a class of multi-order fractional differential equations with error correction and convergence analysis[J]. Advances in Difference Equations, 2018(1): 253. DOI: 10.1186/s13662-018-1702-z. [15] CHEN Y M, LIU L Q, LI B F, et al. Numerical solution for the variable order linear cable equation with Bernstein polynomials[J]. Applied Mathematics and Computation, 2014, 238: 329-341. DOI: 10.1016/j.amc.2014.03.066. [16] CHEN Y M, LIU L Q, LIU D Y, et al. Numerical study of a class of variable order nonlinear fractional differential equation in terms of Bernstein polynomials[J]. Ain Shams Engineering Journal, 2018, 9(4): 1235-1241. DOI: 10.1016/j.asej.2016.07.002. [17] 黄英杰, 周凤英, 许小勇, 等. 第六类Chebyshev小波配置法求分数阶微分方程数值解[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 130-143. DOI: 10.16088/j.issn.1001-6600.2022050602. [18] CHEN Y M, HAN X N, LIU L C. Numerical solution for a class of linear system of fractional differential equations by the Haar wavelet method and the convergence analysis[J]. CMES-Computer Modeling in Engineering and Sciences, 2014, 97(5): 391-405. [19] CAO J W, CHEN Y M, WANG Y H, et al. Numerical analysis of fractional viscoelastic column based on shifted Chebyshev wavelet function[J]. Applied Mathematical Modelling, 2021, 91: 374-389. DOI: 10.1016/j.apm.2020.09.055. [20] WANG L, CHEN Y M. Shifted-Chebyshev-polynomial-based numerical algorithm for fractional order polymer visco-elastic rotating beam[J]. Chaos, Solitons & Fractals, 2020, 132: 109585. DOI: 10.1016/j.chaos.2019.109585. [21] DANG R Q, CHEN Y M. Fractional modelling and numerical simulations of variable-section viscoelastic Arches[J]. Applied Mathematics and Computation, 2021, 409: 126376. DOI: 10.1016/j.amc.2021.126376. [22] WANG L, CHEN Y M, CHENG G, et al. Numerical analysis of fractional partial differential equations applied to polymeric visco-elastic Euler-Bernoulli beam under quasi-static loads[J]. Chaos, Solitons & Fractals, 2020, 140: 110255. DOI: 10.1016/j.chaos.2020.110255. [23] ROBINSON M T A, ADALI S. Effects of the thickness on the stability of axially moving viscoelastic rectangular plates[J]. Applied Acoustics, 2018, 140: 315-326. DOI: 10.1016/j.apacoust.2018.05.005. [24] KOÇAL T. The dynamical behavior of the moving viscoelastic plate in contact with viscous fluid with finite depth under action of time-harmonic forces[J]. Ocean Engineering, 2020, 215: 107840. DOI: 10.1016/j.oceaneng.2020.107840. [25] ZHOU Y F, WANG Z M. Dynamic instability of axially moving viscoelastic plate[J]. European Journal of Mechanics-A/Solids, 2019, 73: 1-10. DOI: 10.1016/j.euromechsol.2018.06.009. [26] MARYNOWSKI K. Fractional rheological model of a metal alloy in the study vibrations of an axially moving aluminum beam in thermal environment[J]. International Journal of Mechanical Sciences, 2020, 174: 105458. DOI: 10.1016/j.ijmecsci.2020.105458. [27] ZHANG D B, TANG Y Q, CHEN L Q. Internal resonance in parametric vibrations of axially accelerating viscoelastic plates[J]. European Journal of Mechanics-A/Solids, 2019, 75: 142-155. DOI: 10.1016/j.euromechsol.2019.01.021. [28] SAKSA T, BANICHUK N, JERONEN J, et al. Dynamic analysis for axially moving viscoelastic panels[J]. International Journal of Solids and Structures, 2012, 49(23/24): 3355-3366. DOI: 10.1016/j.ijsolstr.2012.07.017. [29] JAVADI S, BABOLIAN E, TAHERI Z. Solving generalized pantograph equations by shifted orthonormal Bernstein polynomials[J]. Journal of Computational and Applied Mathematics, 2016, 303: 1-14. DOI: 10.1016/j.cam.2016.02.025. [30] CHEN S B, JAHANSHAHI H, ALHADJI ABBA O, et al. The effect of market confidence on a financial system from the perspective of fractional Calculus: Numerical investigation and circuit realization[J]. Chaos, Solitons & Fractals, 2020, 140: 110223. DOI: 10.1016/j.chaos.2020.110223. |
| [1] | 陈建国, 梁恩华, 宋学伟, 覃章荣. 基于OCT图像三维重建的人眼房水动力学LBM模拟[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 29-41. |
| [2] | 李好, 何冰. 凹槽结构表面液滴弹跳行为研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 42-53. |
| [3] | 张琬婧, 林支桂. 增长区域上一类寄生虫-宿主模型的Turing不稳定[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 132-139. |
| [4] | 管羿鸣, 季婷婷, 杨鑫宇, 闻炳海. 液滴在化学异构表面上侧向弹跳的计算机模拟研究[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 90-100. |
| [5] | 黄春贤, 周效良. 含等级治疗率与不完全康复率的SIRS模型的分岔分析[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 74-81. |
| [6] | 凌风如, 张超英, 陈燕雁, 覃章荣. LBM中基于半程反弹的统一边界条件研究[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 70-78. |
| [7] | 冯金明,李遵先. 一类具扩散的传染病模型的稳定性分析[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 63-68. |
| [8] | 陈春燕, 许志鹏, 邝华. 连续记忆效应的交通流跟驰建模与稳定性分析[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 14-21. |
| [9] | 李谊纯, 董德信, 王一兵. 北仑河口及其邻近海域物质输运滞留时间研究[J]. 广西师范大学学报(自然科学版), 2015, 33(2): 56-63. |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |