广西师范大学学报(自然科学版) ›› 2020, Vol. 38 ›› Issue (1): 70-78.doi: 10.16088/j.issn.1001-6600.2020.01.009

• • 上一篇    下一篇

LBM中基于半程反弹的统一边界条件研究

凌风如, 张超英, 陈燕雁, 覃章荣*   

  1. 广西师范大学广西多源信息挖掘与安全重点实验室,广西桂林541004
  • 收稿日期:2018-12-06 出版日期:2020-01-25 发布日期:2020-01-15
  • 通讯作者: 覃章荣(1979—),男,广西桂林人,广西师范大学副教授。E-mail: qinzhangrong@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(11462003, 11862003);广西自然科学基金(2017GXNSFDA198038);广西自然科学基金(2018JJA110023);广西师范大学研究生创新项目(JXYJSKT-2019-007)

A Unified Boundary Condition Based on the Halfway Bounce-back Scheme in Lattice Boltzmann Method

LING Fengru, ZHANG Chaoying, CHEN Yanyan, QIN Zhangrong*   

  1. Guangxi Key Lab of Multi-Source Information Mining and Security, Guangxi Normal University,Guilin Guangxi 541004, China
  • Received:2018-12-06 Online:2020-01-25 Published:2020-01-15

摘要: 格子Boltzmann方法能够有效地模拟复杂流场的流体流动,边界处理方法的选择对于模拟结果的可靠与否起着至关重要的作用。本文基于半程反弹原理对插值格式的曲线边界条件进行改进,提出一种统一的曲线边界处理新方法,并与格子Boltzmann模拟中常用的几种曲线边界条件做了对比研究。模拟结果显示该方法的计算结果与理论解精确吻合。该方法提高了复杂边界的计算精度和数值稳定性,同时满足质量守恒约束,解决了曲线边界条件中常见的质量流失问题。

关键词: 格子Boltzmann方法, 数值模拟, 曲线边界条件, 统一边界条件, 半程反弹

Abstract: The lattice Boltzmann method can effectively simulate the fluid flow in complex flow fields. However, the reliability of the simulation results strongly depends on the selected boundary treatment methods. Based on the halfway bounce-back scheme, a unified treatment for the curved wall is proposed by improving the curved boundary condition scheme of interpolation. Results from tests are in good agreement with the exact solutions. Compared with several curved boundary condition schemes commonly used in lattice Boltzmann simulation, this method exhibits high accuracy and numerical stability of the complex boundary. The novel method provides a reliable way to solve the common problem of mass leakage in the curved boundary condition, satisfying the mass conservation constraint.

Key words: lattice Boltzmann method, numerical simulation, curved boundary condition, unified boundary condition, halfway bounce-back scheme

中图分类号: 

  • O35
[1] ZARGHAMI A, LOOIJE N, HARRY V D A. Assessment of interaction potential in simulating nonisothermal multiphase systems by means of lattice Boltzmann modeling[J]. Physical Review E, 2015,92(21): 023307. DOI:10.1103/PhysRevE.92.023307.
[2] AIDUN C K, CLAUSEN J R. Lattice-Boltzmann method for complex flows[J]. Annual Review of Fluid Mechanics, 2010, 42(1):439-472. DOI:10.1146/annurev-fluid-121108-145519.
[3] SIDIK N A C, MAMAT R. Recent progress on lattice Boltzmann simulation of nanofluids: A review[J]. International Communications in Heat and Mass Transfer, 2015,66: 11-22. DOI:10.1016/j.icheatmasstransfer.2015.05.010.
[4] ZARGHAMI A, FALCUCCI G, JANNELLI E, et al. Lattice Boltzmann modeling of water entry problems[J]. International Journal of Modern Physics C, 2014,25(12): 1441012. DOI:10.1142/s0129183114410125.
[5] 覃章荣,张超英,丘滨,等.基于CUDA的格子Boltzmann数值模拟加速实现[J].广西师范大学学报(自然科学版),2012,30(4):18-24. DOI:10.16088/j.issn.1001-6600.2012.04.002.
[6] 闻炳海,张超英,刘海燕,等.大血管中血液流动的LBM模拟[J].广西师范大学学报(自然科学版),2008,26(4):22-25. DOI:10.16088/j.issn.1001-6600.2008.04.024.
[7] SUCCI S. The lattice Boltzmann equation: for fluid dynamics and beyond[M]. Oxford: Clarendon Press, 2001:58-60.
[8] WOLFGLADROW D A. Lattice gas cellular automata and lattice Boltzmann models: an introduction[M]. Bremerhaven: Springer, 2005:187-192.
[9] ZIEGLER D P. Boundary conditions for lattice Boltzmann simulations[J]. Journal of Statistical Physics, 1993,71(5): 1171-1177. DOI:10.1007/bf01049965.
[10]LADD A J C, VERBERG R. Lattice-Boltzmann simulations of particle-fluid suspensions[J]. Journal of Statistical Physics, 2001, 104(5):1191-1251. DOI:10.1023/a:1010414013942.
[11]FILIPPOVA O, HÄNEL D. Lattice-Boltzmann simulation of gas-particle flow in filters[J]. Computers and Fluids, 1997, 26(7):697-712. DOI:10.1016/S0045-7930(97)00009-1.
[12]何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京:科学出版社, 2009:136-141.
[13]MEI R, LUO L S, SHYY W. An accurate curved boundary treatment in the lattice Boltzmann method[J]. Journal of Computational Physics, 1999,155(2): 307-330. DOI:10.1006/jcph.1999.6334.
[14]郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京:科学出版社, 2009:68-72.
[15]BOUZIDI M, FIRDAOUSS M, LALLEMAND P. Momentum transfer of a Boltzmann-lattice fluid with boundaries[J]. Physics of Fluids, 2001, 13(11):3452-3459. DOI:10.1063/1.1399290.
[16]LALLEMAND P, LUO L S. Lattice Boltzmann method for moving boundaries[J]. Journal of Computational Physics, 2003, 184(2):406-421. DOI:10.1016/S0021-9991(02)00022-0.
[17]YU D, REN W, SHYY W. A unified boundary treatment in lattice Boltzmann method[C]// Proceedings of the 41st Aerospace Sciences Meeting and Exhibit.Reston, VA:AIAA, 2003:0953. DOI:10.2514/6.2003-953.
[18]TAO S, HE Q, CHEN B M, et al. One-point second-order curved boundary condition for lattice Boltzmann simulation of suspended particles[J]. Computers and Mathematics with Applications, 2018,76(7):1593-1607. DOI:10.1016/j.camwa.2018.07.013.
[19]MOHAMMADIPOOR O R, NIAZMAND H, MIRBOZORGI S A. Alternative curved-boundary treatment for the lattice Boltzmann method and its application in simulation of flow and potential fields[J]. Physical Review E, 2014, 89(1):013309. DOI:10.1103/PhysRevE.89.013309.
[20]NASH R W, CARVER H B, BERNABEU M O, et al. Choice of boundary condition for lattice-Boltzmann simulation of moderate-Reynolds-number flow in complex domains[J]. Physical Review E, 2014,89(2): 023303. DOI:10.1103/PhysRevE.89.023303.
[21]SANJEEVI S K P, ZARGHAMI A, PADDING J T. Choice of no-slip curved boundary condition for lattice Boltzmann simulations of high-Reynolds-number flows[J]. Physical Review E, 2018, 97(4):043305. DOI: 10.1103/PhysRevE.97.043305.
[22]ROHDE M, DERKSEN J J, VAN D A H E A. Volumetric method for calculating the flow around moving objects in lattice-Boltzmann schemes[J]. Physical Review E, 2002, 65(5):056701. DOI:10.1103/PhysRevE.65.056701.
[23]COUPANEC E L, VERSCHAEVE J C G. A mass conserving boundary condition for the lattice Boltzmann method for tangentially moving walls[J]. Mathematics and Computers in Simulation, 2011,81(12): 2632-2645. DOI:10.1016/j.matcom.2011.05.004.
[24]李华兵.晶格玻尔兹曼方法对血液流的初步研究[D]. 上海:复旦大学,2004.
[25]MEI R, SHYY W, YU D, et al. Lattice Boltzmann method for 3-D flows with curved boundary[J]. Journal of Computational Physics, 2000, 161(2):680-699. DOI:10.1006/jcph.2000.6522.
[26]BAO J, YUAN P, SCHAEFER L. A mass conserving boundary condition for the lattice Boltzmann equation method[J]. Journal of Computational Physics, 2008, 227(18):8472-8487. DOI:10.1016/j.jcp.2008.06.003.
[27]LUO L S. Lattice-gas automata and lattice boltzmann equations for two-dimensional hydrodynamics[D]. Atlanta:Georgia Institute of Technology, 1993.
[1] 冯金明,李遵先. 一类具扩散的传染病模型的稳定性分析[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 63-68.
[2] 陈春燕, 许志鹏, 邝华. 连续记忆效应的交通流跟驰建模与稳定性分析[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 14-21.
[3] 李谊纯, 董德信, 王一兵. 北仑河口及其邻近海域物质输运滞留时间研究[J]. 广西师范大学学报(自然科学版), 2015, 33(2): 56-63.
[4] 覃章荣, 张超英, 丘滨, 李圆圆, 莫刘刘. 基于CUDA的格子Boltzmann数值模拟加速实现[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 18-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孟春梅, 陆世银, 梁永红, 莫肖敏, 李卫东, 黄远洁, 成晓静, 苏志恒, 郑华. 岩黄连总碱诱导肝星状细胞凋亡和自噬的电镜实验研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 76 -79 .
[2] 覃盈盈, 漆光超, 梁士楚. 凤眼莲组织浸提液对靖西海菜花种子萌发的影响[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 87 -92 .
[3] 庄枫红, 马姜明, 张雅君, 苏静, 于方明. 中华水韭对不同光照条件的生理生态响应[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 93 -100 .
[4] 韦宏金, 周喜乐, 金冬梅, 严岳鸿. 湖南蕨类植物增补[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 101 -106 .
[5] 包金萍, 郑连斌, 宇克莉, 宋雪, 田金源, 董文静. 大凉山彝族成人皮褶厚度特征[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 107 -112 .
[6] 林永生, 裴建国, 邹胜章, 杜毓超, 卢丽. 清江下游红层岩溶及其水化学特征[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 113 -120 .
[7] 滕志军, 吕金玲, 郭力文, 许媛媛. 基于改进粒子群算法的无线传感器网络覆盖策略[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 9 -16 .
[8] 刘铭, 张双全, 何禹德. 基于改进SOM神经网络的异网电信用户细分研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 17 -24 .
[9] 黄燕萍, 韦煜明. 一类分数阶微分方程多点边值问题的多解性[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 41 -49 .
[10] 温玉卓, 唐胜达, 邓国和. 随机环境下具有阈值分红策略的风险过程的破产时间分析[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 56 -62 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发