广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (2): 90-100.doi: 10.16088/j.issn.1001-6600.2020031201

• CCIR2020 • 上一篇    下一篇

液滴在化学异构表面上侧向弹跳的计算机模拟研究

管羿鸣, 季婷婷, 杨鑫宇, 闻炳海*   

  1. 广西师范大学 广西多源信息挖掘与安全重点实验室, 广西 桂林 541004
  • 收稿日期:2020-03-12 修回日期:2020-07-10 出版日期:2021-03-25 发布日期:2021-04-15
  • 通讯作者: 闻炳海(1974—),男,河北青县人,广西师范大学教授,博士。E-mail:oceanwen@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(11862003,81860635);广西自然科学基金(2017GXNSFDA198038)

Computer Simulation of Droplets Bounce Laterally on Chemical Isomerism Surfaces

GUAN Yiming, JI Tingting, YANG Xinyu, WEN Binghai*   

  1. Guangxi Key Laboratory of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2020-03-12 Revised:2020-07-10 Online:2021-03-25 Published:2021-04-15

摘要: 液滴撞击润湿性不同的表面会产生不同的动态行为,数值模拟是研究该现象的一种有效方法。采用基于化学势的晶格Boltzmann方法,通过调整接触角来改变固体表面的润湿性,对液滴撞击单一接触角的疏水表面以及接触角分布不同的疏水表面所产生的动态行为进行模拟和分析。当给疏水表面施加单一接触角时,液滴的弹跳高度随表面接触角的增大而增大,并且当接触角增大到160°时会产生二次弹跳现象,大于170°时产生多次弹跳现象;当给疏水表面施加分布不同的接触角时,根据表面接触角设置方法的不同,所产生的液滴弹跳现象会有相应的差异。结果表明,当液滴撞击2种接触角交界处时,液滴总是向接触角小的一方侧向弹跳,其弹跳高度和距离取决于2种接触角的差值,并给出了该差值分别与弹跳高度和距离的基本关系。这种特性对实现有效控制液滴动态行为十分有帮助,可广泛应用于自清洁、喷墨打印等领域。

关键词: 晶格Boltzmann方法, 数值模拟, 接触角, 润湿性, 液滴侧向弹跳

Abstract: There are many different dynamic behaviors when droplets impact different wettability surfaces. Numerical simulation method is a very simple and effective way to study this phenomenon. Based on the chemical potential lattice Boltzmann method, the wettability of solid surfaces is changed by adjusting the contact angle, and the dynamic behavior that droplets impact the hydrophobic surfaces of single contact angle and different contact angle distributions are simulated and analyzed. When a single contact angle is applied to the hydrophobic surface, the bounce height of the droplet increases as the contact angle of the surface increases, and the second bounce will occur when the contact angle increases to 160°, while the multiple bounce will occur when the contact angle increases to 170°. When differently distributed contact angles are applied to the surface, the droplets bounce phenomenon will be varied correspondingly. The results show that when a droplet impacts the junction of two kinds of contact angles, the droplet always bounces laterally to the side with a small contact angle, and its bounce height and distance depend on the difference between the two contact angles. Besides, the bounce height and distance are changing with the differences of the contact angle respectively. This characteristic is very helpful to effectively control the dynamic behavior of droplets and it can be widely used in self-cleaning, inkjet printing and other fields.

Key words: lattice Boltzmann method, numerical simulation, contact angle, wettability, droplets bounce laterally

中图分类号: 

  • O35
[1] ANTONINI C,AMIRFAZLI A,MARENGO M.Drop impact and wettability:from hydrophilic to superhydrophobic surfaces[J].Physics of Fluids,2012,24(10):102104.
[2] YARIN A L.Drop impact dynamics:splashing,spreading,receding,bouncing…[J].Annual Review of Fluid Mechanics,2006,38:159-192.
[3] BIRD J C,DHIMAN R,KWON H M,et al.Reducing the contact time of a bouncing drop[J].Nature,2013,503(7476):385-388.
[4] DE RUITER J,SOTO D,VARANASI K K.Self-peeling of impacting droplets[J].Nature Physics,2018,14:35-39.
[5] HAN J,KIM W,BAE C,et al.Contact time on curved superhydrophobic surfaces[J].Physical Review E,2020,101(4):043108.
[6] ANDREW M,LIU Y H,YEOMANS J M.Variation of the contact time of droplets bouncing on cylindrical ridges with ridge size[J].Langmuir:the ACS Journal of Surfaces and Colloids,2017,33(30):7583-7587.
[7] MALLA L K,PATIL N D,BHARDWAJ R,et al.Droplet bouncing and breakup during impact on a microgrooved surface[J].Langmuir:the ACS Journal of Surfaces and Colloids,2017,33(38):9620-9631.
[8] LEE S H,SEONG M,KWAK M K,et al.Tunable multimodal drop bouncing dynamics and anti-icing performance of a magnetically responsive hair array[J].ACS Nano,2018,12(11):10693-10702.
[9] SONG J L,GAO M Q,ZHAO C L,et al.Large-area fabrication of droplet pancake bouncing surface and control of bouncing state[J].ACS Nano,2017,11(9):9259-9267.
[10] SU J P,LEGCHENKOVA I,LIU C,et al.Faceted and circular droplet spreading on hierarchical superhydrophobic surfaces[J].Langmuir:the ACS Journal of Surfaces and Colloids,2020,36(2):534-539.
[11] WORTHINGTON A M.On the forms assumed by drops of liquids falling vertically on a horizontal plate[J].Proceedings of the Royal Society of London,1877,25:261-272.
[12] LU Y,SHEN Y Z,TAO J,et al.Droplet directional movement on the homogeneously structured superhydrophobic surface with the gradient non-wettability[J].Langmuir:the ACS Journal of Surfaces and Colloids,2020,36(4):880-888.
[13] ZHANG B,LEI Q,WANG Z K,et al.Droplets can rebound toward both directions on textured surfaces with a wettability gradient[J].Langmuir:the ACS Journal of Surfaces and Colloids,2016,32(1):346-351.
[14] ZHANG R,HAO P F,HE F.Drop impact on oblique superhydrophobic surfaces with two-tier roughness[J].Langmuir:the ACS Journal of Surfaces and Colloids,2017,33(14):3556-3567.
[15] ZHANG R,ZHANG X W,HAO P F,et al.Internal rupture and rapid bouncing of impacting drops induced by submillimeter-scale textures[J].Physical Review E,2017,95(6):063104.
[16] YUAN W Z,ZHANG L Z.Lattice Boltzmann simulation of droplets impacting on superhydrophobic surfaces with randomly distributed rough structures[J].Langmuir:the ACS Journal of Surfaces and Colloids,2017,33(3):820-829.
[17] 刘炫麟,王笑珊,赵殿伟,等.液滴撞击超疏水—亲水混合表面的动态行为特性[J].南京师范大学学报(工程技术版),2019,19(2):18-24.
[18] LIU Y H,MOEVIUS L,XU X P,et al.Pancake bouncing on superhydrophobic surfaces[J].Nature Physics,2014,10(7):515-519.
[19] CHEN S Y,DOOLEN G D.Lattice Boltzmann method for fluid flows[J].Annual Review of Fluid Mechanics,1998,30:329-364.
[20] HE X Y,DOOLEN G.Lattice Boltzmann method on curvilinear coordinates system:flow around a circular cylinder[J].Journal of Computational Physics,1997,134(2):306-315.
[21] INAMURO T,OGATA T,TAJIMA S,et al.A lattice Boltzmann method for incompressible two-phase flows with large density differences[J].Journal of Computational Physics,2004,198(2):628-644.
[22] KANG Q J,ZHANG D X,CHEN S Y.Unified lattice Boltzmann method for flow in multiscale porous media[J].Physical Review E Statistical Nonlinear and soft Matter Physics,2002,66(5):056307.
[23] LALLEMAND P,LUO L S.Lattice Boltzmann method for moving boundaries[J].Journal of Computational Physics,2003,184(2):406-421.
[24] MAYER G,HÁZI G,IMRE A R,et al.Lattice Boltzmann simulation of vapor-liquid equilibrium on 3D finite lattice[J].International Journal of Modern Physics C,2004,15(3):459-469.
[25] SUCCI S,FOTI E,HIGUERA F.Three-dimensional flows in complex geometries with the lattice Boltzmann method[J].Europhysics Letters,1989,10(5):433-438.
[26] SWIFT M R,ORLANDINI E,OSBORN W R,et al.Lattice Boltzmann simulations of liquid-gas and binary fluid systems[J].Physical Review E,1996,54(5):5041-5052.
[27] WEN B H,QIN Z R,ZHANG C Y,et al.Thermodynamic-consistent lattice Boltzmann model for nonideal fluids[J].Europhysics Letters,2015,112(4):44002.
[28] SWIFT M R,OSBORN W R,YEOMANS J M.Lattice Boltzmann simulation of nonideal fluids[J].Physical Review Letters,1995,75(5):830-833.
[29] WEN B H,ZHOU X,HE B,et al.Chemical-potential-based lattice Boltzmann method for nonideal fluids[J].Physical review E,2017,95(6):063305.
[30] SHAN X W.Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models[J].Physical Review E,2006,73(4):047701.
[31] LI Q,LUO K H,KANG Q J,et al.Contact angles in the pseudopotential lattice Boltzmann modeling of wetting[J].Physical Review E,2014,90(5):053301.
[32] WEN B H,HUANG B F,QIN Z R,et al.Contact angle measurement in lattice Boltzmann method[J].Computers and Mathematics with Applications,2018,76(7):1686-1698.
[1] 黄春贤, 周效良. 含等级治疗率与不完全康复率的SIRS模型的分岔分析[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 74-81.
[2] 赵金想, 陈燕雁, 覃章荣, 张超英. 一种基于化学势LBM多相流模型的改进方法[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 87-95.
[3] 凌风如, 张超英, 陈燕雁, 覃章荣. LBM中基于半程反弹的统一边界条件研究[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 70-78.
[4] 邱文, 叶勇, 周思浩, 闻炳海. 基于晶格Boltzmann方法研究微液滴形变中接触角[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 27-37.
[5] 冯金明,李遵先. 一类具扩散的传染病模型的稳定性分析[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 63-68.
[6] 黄兵方,闻炳海,邱文,赵琬玲,陈燕雁. 基于晶格Boltzmann方法的接触角实时测量研究[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 34-43.
[7] 陈春燕, 许志鹏, 邝华. 连续记忆效应的交通流跟驰建模与稳定性分析[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 14-21.
[8] 李谊纯, 董德信, 王一兵. 北仑河口及其邻近海域物质输运滞留时间研究[J]. 广西师范大学学报(自然科学版), 2015, 33(2): 56-63.
[9] 张超英, 黎槟华, 覃章荣. 基于CUDA的晶格Boltzmann并行算法的综合优化设计[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 142-148.
[10] 邱冰, 王立龙, 薛泽, 李华兵. 用晶格Boltzmann方法研究微血管脉动流中悬浮颗粒运动特征的转变[J]. 广西师范大学学报(自然科学版), 2011, 29(4): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡锦铭, 韦笃取. 分数阶永磁同步电机的广义同步研究[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 14 -20 .
[2] 朱勇建, 罗坚, 秦运柏, 秦国峰, 唐楚柳. 基于光度立体和级数展开法的金属表面缺陷检测方法[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 21 -31 .
[3] 杨丽婷, 刘学聪, 范鹏来, 周岐海. 中国非人灵长类声音通讯研究进展[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 1 -9 .
[4] 宾石玉, 廖芳, 杜雪松, 许艺兰, 王鑫, 武霞, 林勇. 罗非鱼耐寒性能研究进展[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 10 -16 .
[5] 刘静, 边迅. 直翅目昆虫线粒体基因组的特征及应用[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 17 -28 .
[6] 李兴康, 钟恩主, 崔春艳, 周佳, 李小平, 管振华. 西黑冠长臂猿滇西亚种鸣叫行为监测[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 29 -37 .
[7] 和鑫明, 夏万才, 巴桑, 龙晓斌, 赖建东, 杨婵, 王凡, 黎大勇. 滇金丝猴主雄应对配偶雌性数量的理毛策略[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 38 -44 .
[8] 付文, 任宝平, 林建忠, 栾科, 王朋程, 王宾, 黎大勇, 周岐海. 济源太行山猕猴种群数量和保护现状[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 45 -52 .
[9] 郑景金, 梁霁鹏, 张克处, 黄爱面, 陆倩, 李友邦, 黄中豪. 基于木本植物优势度的白头叶猴食物选择研究[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 53 -64 .
[10] 杨婵, 万雅琼, 黄小富, 袁旭东, 周洪艳, 方浩存, 黎大勇, 李佳琦. 基于红外相机技术的小麂(Muntiacus reevesi)活动节律[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 65 -70 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发