广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (6): 128-139.doi: 10.16088/j.issn.1001-6600.2024120304

• 数学与统计学 • 上一篇    下一篇

两种黏弹性运动板的数值模拟与稳定性分析

邓金娜1, 刘秋梅1*, 陈一鸣2, 杨爱民1   

  1. 1.华北理工大学 理学院,河北 唐山 063210;
    2.燕山大学 理学院,河北 秦皇岛 066000
  • 收稿日期:2024-12-03 修回日期:2025-01-15 发布日期:2025-11-19
  • 通讯作者: 刘秋梅(1981—),女,河北唐山人,华北理工大学副教授,博士。E-mail: liuqiumei@ncst.edu.cn
  • 基金资助:
    河北省自然科学基金(E2022209110)

Numerical Simulation and Stability Analysis of Two Kinds of Viscoelastic Moving Plates

DENG Jinna1, LIU Qiumei1*, CHEN Yiming2, YANG Aimin1   

  1. 1. College of Science, North China University of Science and Technology, Tangshan Hebei 063210, China;
    2. School of Science, Yanshan University, Qinhuangdao Hebei 066004, China
  • Received:2024-12-03 Revised:2025-01-15 Published:2025-11-19

摘要: 为研究2种黏弹性轴向运动板的动态响应,采用变分数阶模型推导轴向运动板的控制方程,将移位Bernstein多项式作为基函数来求解变分数阶微分方程,导出移位Bernstein多项式的算子矩阵,控制方程用矩阵乘积的形式表示。通过数值算例验证算法的可行性。比较陶瓷(ceramic)板和聚对苯二甲酸乙二醇酯(PET)板在简谐载荷下的位移,分析轴向移动速度对轴向黏弹性板位移的影响,并比较不同材料板在不同厚度变化下的位移变化。研究结果初步突破求解黏弹性运动板的变分数阶模型,为黏弹性结构的研究提供理论依据。

关键词: 黏弹性轴向运动板, 变分数阶微分方程, 移位Bernstein多项式, 数值模拟

Abstract: In order to study the dynamic response of two kinds of viscoelastic axially moving plates, the governing equations of the axially moving plates are derived by using the variable-fractional model. Firstly, the variable-fractional differential equations are solved by using the shifted Bernstein polynomial as the basis function, and the operator matrix of the shifted Bernstein polynomial is derived. Secondly, the feasibility of the algorithm is verified by numerical examples. Thirdly, the displacement of ceramic plate and PET plate under harmonic load is further studied and compared. Finally the influence of axial moving speed on displacement of axial viscoelastic plate is analyzed, and the displacement changes of different material plates under different thickness changes are compared. The research results break through the variable-fractional order model of viscoelastic moving plate and provide a theoretical basis for the study of viscoelastic structure.

Key words: viscoelastic axially moving plate, differential equation of variable fractional order, shifted Bernstein polynomial, numerical simulation

中图分类号:  O221

[1] TANG Y Q, CHEN L Q. Stability analysis and numerical confirmation in parametric resonance of axially moving viscoelastic plates with time-dependent speed[J]. European Journal of Mechanics-A/Solids, 2013, 37: 106-121. DOI: 10.1016/j.euromechsol.2012.05.010.
[2] SHU Z, YOU R K, ZHOU Y. Viscoelastic materials for structural dampers: a review[J]. Construction and Building Materials, 2022, 342: 127955. DOI: 10.1016/j.conbuildmat.2022.127955.
[3] 王磊, 陈一鸣, 冯君尧. 分数阶黏弹性Euler-Bernoulli梁的数值分析[J]. 辽宁工程技术大学学报(自然科学版), 2020, 39(5): 471-476.
[4] SHAO X D, HE G, SHEN X J, et al. Conceptual design of 1 000 m scale steel-UHPFRC composite truss arch bridge[J]. Engineering Structures, 2021, 226: 111430. DOI: 10.1016/j.engstruct.2020.111430.
[5] 冯君尧, 陈一鸣, 王磊. 黏弹性旋转梁的分数阶模型及其数值算法[J]. 辽宁工程技术大学学报(自然科学版), 2020, 39(3): 287-292.
[6] ROUZEGAR J, VAZIRZADEH M, HEYDARI M H. A fractional viscoelastic model for vibrational analysis of thin plate excited by supports movement[J]. Mechanics Research Communications, 2020, 110: 103618. DOI: 10.1016/j.mechrescom.2020.103618.
[7] NWAGOUM TUWA P R, MIWADINOU C H, MONWANOU A V, et al. Chaotic vibrations of nonlinear viscoelastic plate with fractional derivative model and subjected to parametric and external excitations[J]. Mechanics Research Communications, 2019, 97: 8-15. DOI: 10.1016/j.mechrescom.2019.04.001.
[8] 徐志刚. 三类微分方程的Euler小波数值解法[D]. 抚州: 东华理工大学, 2021. DOI: 10.27145/d. cnki.ghddc.2021.000320.
[9] 李静, 朱莉. 分数阶变系数微分方程的Euler小波解法[J]. 宁波工程学院学报, 2019, 31(1): 1-6.
[10] SUN L, CHEN Y M, DANG R Q, et al. Shifted Legendre polynomials algorithm used for the numerical analysis of viscoelastic plate with a fractional order model[J]. Mathematics and Computers in Simulation, 2022, 193: 190-203. DOI: 10.1016/j.matcom.2021.10.007.
[11] LOGHMAN E, KAMALI A, BAKHTIARI-NEJAD F, et al. Nonlinear free and forced vibrations of fractional modeled viscoelastic FGM micro-beam[J]. Applied Mathematical Modelling, 2021, 92: 297-314. DOI: 10. 1016/j.apm.2020.11.011.
[12] CAO J W, CHEN Y M, WANG Y H, et al. Shifted Legendre polynomials algorithm used for the dynamic analysis of PMMA viscoelastic beam with an improved fractional model[J]. Chaos, Solitons & Fractals, 2020, 141: 110342. DOI: 10.1016/j.chaos.2020.110342.
[13] CHEN Y M, WEI Y Q, LIU D Y, et al. Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets[J]. Applied Mathematics Letters, 2015, 46: 83-88. DOI: 10.1016/j.aml.2015.02.010.
[14] HAN W, CHEN Y M, LIU D Y, et al. Numerical solution for a class of multi-order fractional differential equations with error correction and convergence analysis[J]. Advances in Difference Equations, 2018(1): 253. DOI: 10.1186/s13662-018-1702-z.
[15] CHEN Y M, LIU L Q, LI B F, et al. Numerical solution for the variable order linear cable equation with Bernstein polynomials[J]. Applied Mathematics and Computation, 2014, 238: 329-341. DOI: 10.1016/j.amc.2014.03.066.
[16] CHEN Y M, LIU L Q, LIU D Y, et al. Numerical study of a class of variable order nonlinear fractional differential equation in terms of Bernstein polynomials[J]. Ain Shams Engineering Journal, 2018, 9(4): 1235-1241. DOI: 10.1016/j.asej.2016.07.002.
[17] 黄英杰, 周凤英, 许小勇, 等. 第六类Chebyshev小波配置法求分数阶微分方程数值解[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 130-143. DOI: 10.16088/j.issn.1001-6600.2022050602.
[18] CHEN Y M, HAN X N, LIU L C. Numerical solution for a class of linear system of fractional differential equations by the Haar wavelet method and the convergence analysis[J]. CMES-Computer Modeling in Engineering and Sciences, 2014, 97(5): 391-405.
[19] CAO J W, CHEN Y M, WANG Y H, et al. Numerical analysis of fractional viscoelastic column based on shifted Chebyshev wavelet function[J]. Applied Mathematical Modelling, 2021, 91: 374-389. DOI: 10.1016/j.apm.2020.09.055.
[20] WANG L, CHEN Y M. Shifted-Chebyshev-polynomial-based numerical algorithm for fractional order polymer visco-elastic rotating beam[J]. Chaos, Solitons & Fractals, 2020, 132: 109585. DOI: 10.1016/j.chaos.2019.109585.
[21] DANG R Q, CHEN Y M. Fractional modelling and numerical simulations of variable-section viscoelastic Arches[J]. Applied Mathematics and Computation, 2021, 409: 126376. DOI: 10.1016/j.amc.2021.126376.
[22] WANG L, CHEN Y M, CHENG G, et al. Numerical analysis of fractional partial differential equations applied to polymeric visco-elastic Euler-Bernoulli beam under quasi-static loads[J]. Chaos, Solitons & Fractals, 2020, 140: 110255. DOI: 10.1016/j.chaos.2020.110255.
[23] ROBINSON M T A, ADALI S. Effects of the thickness on the stability of axially moving viscoelastic rectangular plates[J]. Applied Acoustics, 2018, 140: 315-326. DOI: 10.1016/j.apacoust.2018.05.005.
[24] KOÇAL T. The dynamical behavior of the moving viscoelastic plate in contact with viscous fluid with finite depth under action of time-harmonic forces[J]. Ocean Engineering, 2020, 215: 107840. DOI: 10.1016/j.oceaneng.2020.107840.
[25] ZHOU Y F, WANG Z M. Dynamic instability of axially moving viscoelastic plate[J]. European Journal of Mechanics-A/Solids, 2019, 73: 1-10. DOI: 10.1016/j.euromechsol.2018.06.009.
[26] MARYNOWSKI K. Fractional rheological model of a metal alloy in the study vibrations of an axially moving aluminum beam in thermal environment[J]. International Journal of Mechanical Sciences, 2020, 174: 105458. DOI: 10.1016/j.ijmecsci.2020.105458.
[27] ZHANG D B, TANG Y Q, CHEN L Q. Internal resonance in parametric vibrations of axially accelerating viscoelastic plates[J]. European Journal of Mechanics-A/Solids, 2019, 75: 142-155. DOI: 10.1016/j.euromechsol.2019.01.021.
[28] SAKSA T, BANICHUK N, JERONEN J, et al. Dynamic analysis for axially moving viscoelastic panels[J]. International Journal of Solids and Structures, 2012, 49(23/24): 3355-3366. DOI: 10.1016/j.ijsolstr.2012.07.017.
[29] JAVADI S, BABOLIAN E, TAHERI Z. Solving generalized pantograph equations by shifted orthonormal Bernstein polynomials[J]. Journal of Computational and Applied Mathematics, 2016, 303: 1-14. DOI: 10.1016/j.cam.2016.02.025.
[30] CHEN S B, JAHANSHAHI H, ALHADJI ABBA O, et al. The effect of market confidence on a financial system from the perspective of fractional Calculus: Numerical investigation and circuit realization[J]. Chaos, Solitons & Fractals, 2020, 140: 110223. DOI: 10.1016/j.chaos.2020.110223.
[1] 陈建国, 梁恩华, 宋学伟, 覃章荣. 基于OCT图像三维重建的人眼房水动力学LBM模拟[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 29-41.
[2] 李好, 何冰. 凹槽结构表面液滴弹跳行为研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 42-53.
[3] 张琬婧, 林支桂. 增长区域上一类寄生虫-宿主模型的Turing不稳定[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 132-139.
[4] 管羿鸣, 季婷婷, 杨鑫宇, 闻炳海. 液滴在化学异构表面上侧向弹跳的计算机模拟研究[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 90-100.
[5] 黄春贤, 周效良. 含等级治疗率与不完全康复率的SIRS模型的分岔分析[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 74-81.
[6] 凌风如, 张超英, 陈燕雁, 覃章荣. LBM中基于半程反弹的统一边界条件研究[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 70-78.
[7] 冯金明,李遵先. 一类具扩散的传染病模型的稳定性分析[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 63-68.
[8] 陈春燕, 许志鹏, 邝华. 连续记忆效应的交通流跟驰建模与稳定性分析[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 14-21.
[9] 李谊纯, 董德信, 王一兵. 北仑河口及其邻近海域物质输运滞留时间研究[J]. 广西师范大学学报(自然科学版), 2015, 33(2): 56-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘晓娟, 林璐, 胡郁葱, 潘雷. 站点周边用地类型对地铁乘车满意度影响研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 1 -12 .
[2] 韩华彬, 高丙朋, 蔡鑫, 孙凯. 基于HO-CNN-BiLSTM-Transformer模型的风机叶片结冰故障诊断[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 13 -28 .
[3] 陈建国, 梁恩华, 宋学伟, 覃章荣. 基于OCT图像三维重建的人眼房水动力学LBM模拟[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 29 -41 .
[4] 李好, 何冰. 凹槽结构表面液滴弹跳行为研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 42 -53 .
[5] 凌福, 张永刚, 闻炳海. 基于插值的多相流格子Boltzmann方法曲线边界算法研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 54 -68 .
[6] 解盛, 马海菲, 张灿龙, 王智文, 韦春荣. 基于多分辨率特征定位的跨模态行人检索方法[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 69 -79 .
[7] 魏梓书, 陈志刚, 王衍学, 哈斯铁尔·马德提汗. 基于SBSI-YOLO11的轻量化轴承外观缺陷检测算法[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 80 -91 .
[8] 易见兵, 胡雅怡, 曹锋, 李俊, 彭鑫, 陈鑫. 融合动态通道剪枝的轻量级CT图像肺结节检测网络设计[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 92 -106 .
[9] 卢梦筱, 张阳春, 章晓峰. 基于分布式强化学习方法解决后继特征中的低估问题[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 107 -119 .
[10] 姜云卢, 卢辉杰, 黄晓雯. 惩罚加权复合分位数回归方法在固定效应面板数据中的应用研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 120 -127 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发