广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (6): 120-127.doi: 10.16088/j.issn.1001-6600.2024111001

• 数学与统计学 • 上一篇    下一篇

惩罚加权复合分位数回归方法在固定效应面板数据中的应用研究

姜云卢*, 卢辉杰, 黄晓雯   

  1. 暨南大学 经济学院,广东 广州 510632
  • 收稿日期:2024-11-10 修回日期:2024-12-25 发布日期:2025-11-19
  • 通讯作者: 姜云卢(1983—),男,湖南邵阳人,暨南大学教授,博士。E-mail: tjiangyl@jnu.edu.cn
  • 基金资助:
    国家自然科学基金(12171203,12571284);广东省自然科学基金(2022A1515010045);中央高校基本科研业务费专项资金(23JNQMX21)

Application Research of Penalized Weighted Composite Quantile Regression Method in Fixed Effects Panel Data

JIANG Yunlu*, LU Huijie, HUANG Xiaowen   

  1. School of Economics, Jinan University, Guangzhou Guangdong 510632, China
  • Received:2024-11-10 Revised:2024-12-25 Published:2025-11-19

摘要: 面板数据能够探索和解释数据背后的动态变化和异质性差异,是众多领域的研究热点。本文研究带有个体固定效应面板数据的变量选择问题。首先引入滤子矩阵消除面板数据的固定效应。再通过自适应LASSO惩罚加权复合分位数回归方法估计回归系数并进行变量选择,加权复合分位数回归对每个不同的分位数回归施加基于数据驱动的权重。数值模拟结果表明,本文方法在估计精度和变量选择准确度上都优于自适应LASSO惩罚复合分位数回归方法以及最小二乘方法。最后,应用所提方法分析国际经济面板数据,结果显示本文方法的拟合优度高于其他2种方法。

关键词: 固定效应, 面板数据, 加权复合分位数回归, 变量选择

Abstract: Panel data can explore and explain the dynamic changes and heterogeneity differences behind the data, making it a research hotspot in many fields.This article addresses the issue of variable selection in panel data with individual fixed effects. Firstly, a filter matrix is introduced to eliminate the fixed effects of panel data, and then estimates the regression coefficients and conducts variable selection through the adaptive LASSO-penalized weighted composite quantile regression method. Secondly, the weighted composite quantile regression applies data-driven weights to each different quantile regression. Thirdly, the results of numerical simulations indicate that this method outperforms the adaptive LASSO-penalized composite quantile regression method and the least squares method in both estimation accuracy and variable selection accuracy. Finally, the proposed method is applied to analyze international economic panel data, and the results show that the goodness of fit of the proposed method is higher than that of the other two methods.

Key words: fixed effect, panel data, weighted composite quantile regression, variable selection

中图分类号:  O212.4

[1] TIBSHIRANI R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1996, 58(1): 267-288. DOI: 10.1111/j.2517-6161.1996.tb02080.x.
[2] FAN J Q, LI R Z. Variable selection via nonconcave penalized likelihood and its oracle properties[J]. Journal of the American Statistical Association, 2001, 96(456): 1348-1360. DOI: 10.1198/016214501753382273.
[3] ZOU H. The adaptive lasso and its oracle properties[J]. Journal of the American Statistical Association, 2006, 101(476): 1418-1429. DOI: 10.1198/016214506000000735.
[4] ZOU H, HASTIE T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2005, 67(2): 301-320. DOI: 10.1111/j.1467-9868.2005.00503.x.
[5] WEN C H, WANG X Q, WANG S L. Laplace error penalty-based variable selection in high dimension[J]. Scandinavian Journal of Statistics, 2015, 42(3): 685-700. DOI: 10.1111/sjos.12130.
[6] BELLONI A, CHERNOZHUKOV V, HANSEN C, et al. Inference in high-dimensional panel models with an application to Gun control[J]. Journal of Business & Economic Statistics, 2016, 34(4): 590-605. DOI: 10.1080/07350015.2015.1102733.
[7] 田果, 杨宜平. 面板数据固定效应线性回归模型的变量选择[J/OL]. 山西大学学报(自然科学版), 1-8[2024-05-21].https://doi.org/10.13451/j.sxu.ns.2024023.
[8] WU Y, LIU Y. Variable selection in quantile regression[J]. Statistica Sinica, 2009,19: 801-817.
[9] FAN J Q, FAN Y Y, BARUT E. Adaptive robust variable selection[J]. Annals of Statistics, 2014, 42(1): 324-351. DOI: 10.1214/13-AOS1191.
[10] ZOU H, YUAN M. Composite quantile regression and the oracle model selection theory[J]. The Annals of Statistics, 2008, 36(3): 1108-1126. DOI: 10.1214/07-aos507.
[11] 罗登菊, 戴家佳, 罗兴甸. 随机效应模型的复合分位数回归估计[J]. 贵州大学学报(自然科学版), 2019, 36(2): 96-100, 108. DOI: 10.15958/j.cnki.gdxbzrb.2019.02.19.
[12] QU L Q, HAO M L, SUN L Q. Sparse composite quantile regression with ultra-high dimensional heterogeneous data[J]. Statistica Sinica, 2022, 32(1): 459-475. DOI: 10.5705/ss.202020.0115.
[13] SONG Y Q, LI Z T, FANG M L. Robust variable selection based on penalized composite quantile regression for high-dimensional single-index models[J]. Mathematics, 2022, 10(12): 2000. DOI: 10.3390/math10122000.
[14] 杨晓蓉, 李路, 武皓月, 等. 删失部分线性可加模型的复合分位数回归及应用[J]. 应用概率统计, 2023, 39(4): 604-622. DOI: 10.3969/j.issn.1001-4268.2023.04.010.
[15] 李灿, 杨建波, 李荣. 部分线性变系数模型的贝叶斯复合分位数回归[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 117-129. DOI: 10.16088/j.issn.1001-6600.2023102501.
[16] 杨宜平, 赵培信, 黄霞. 面板数据下带固定效应的线性回归模型的稳健变量选择[J].数理统计与管理, 2024, 43(1): 50-57.
[17] JIANG X J, JIANG J C, SONG X Y. Oracle model selection for nonlinear models based on weighted composite quantile regression accelerated failure time model[J]. Statistica Sinica, 2012, 22(4): 1479-1506. DOI: 10.5705/ss.2010.203.
[18] JIANG Y L, LI H. Penalized weighted composite quantile regression in the linear regression model with heavy-tailed autocorrelated errors[J]. Journal of the Korean Statistical Society, 2014, 43(4): 531-543. DOI: 10.1016/j.jkss.2014.03.004.
[19] ARELLANO M. Panel data econometrics[M]. Oxford:Oxford University Press, 2003.DOI: 10.1093/0199245282.001.0001.
[20] HUNTER D R, LANGE K. A tutorial on MM algorithms[J]. The American Statistician, 2004, 58(1): 30-37. DOI: 10.1198/0003130042836.
[21] HUNTER D R, LANGE K. Quantile regression via an MM algorithm[J]. Journal of Computational and Graphical Statistics, 2000, 9(1): 60-77. DOI: 10.1080/10618600.2000.10474866.
[22] FEENSTRA R C, INKLAAR R, TIMMER M P. The next generation of the Penn world table[J]. American Economic Review, 2015, 105(10): 3150-3182. DOI: 10.1257/aer.20130954.
[1] 曾庆樊, 秦永松, 黎玉芳. 一类空间面板数据模型的经验似然推断[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 30-42.
[2] 徐萍, 钟思敏, 李斌斌, 熊文俊. 基于稀疏超高维非参数可加模型的条件独立筛选[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 100-107.
[3] 李城恩, 潘晓映, 王美涵, 施建华. 基于区间型数据计量的我国粮食产量研究[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 206-215.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘晓娟, 林璐, 胡郁葱, 潘雷. 站点周边用地类型对地铁乘车满意度影响研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 1 -12 .
[2] 韩华彬, 高丙朋, 蔡鑫, 孙凯. 基于HO-CNN-BiLSTM-Transformer模型的风机叶片结冰故障诊断[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 13 -28 .
[3] 陈建国, 梁恩华, 宋学伟, 覃章荣. 基于OCT图像三维重建的人眼房水动力学LBM模拟[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 29 -41 .
[4] 李好, 何冰. 凹槽结构表面液滴弹跳行为研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 42 -53 .
[5] 凌福, 张永刚, 闻炳海. 基于插值的多相流格子Boltzmann方法曲线边界算法研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 54 -68 .
[6] 解盛, 马海菲, 张灿龙, 王智文, 韦春荣. 基于多分辨率特征定位的跨模态行人检索方法[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 69 -79 .
[7] 魏梓书, 陈志刚, 王衍学, 哈斯铁尔·马德提汗. 基于SBSI-YOLO11的轻量化轴承外观缺陷检测算法[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 80 -91 .
[8] 易见兵, 胡雅怡, 曹锋, 李俊, 彭鑫, 陈鑫. 融合动态通道剪枝的轻量级CT图像肺结节检测网络设计[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 92 -106 .
[9] 卢梦筱, 张阳春, 章晓峰. 基于分布式强化学习方法解决后继特征中的低估问题[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 107 -119 .
[10] 邓金娜, 刘秋梅, 陈一鸣, 杨爱民. 两种黏弹性运动板的数值模拟与稳定性分析[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 128 -139 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发