|
|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (6): 120-127.doi: 10.16088/j.issn.1001-6600.2024111001
姜云卢*, 卢辉杰, 黄晓雯
JIANG Yunlu*, LU Huijie, HUANG Xiaowen
摘要: 面板数据能够探索和解释数据背后的动态变化和异质性差异,是众多领域的研究热点。本文研究带有个体固定效应面板数据的变量选择问题。首先引入滤子矩阵消除面板数据的固定效应。再通过自适应LASSO惩罚加权复合分位数回归方法估计回归系数并进行变量选择,加权复合分位数回归对每个不同的分位数回归施加基于数据驱动的权重。数值模拟结果表明,本文方法在估计精度和变量选择准确度上都优于自适应LASSO惩罚复合分位数回归方法以及最小二乘方法。最后,应用所提方法分析国际经济面板数据,结果显示本文方法的拟合优度高于其他2种方法。
中图分类号: O212.4
| [1] TIBSHIRANI R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1996, 58(1): 267-288. DOI: 10.1111/j.2517-6161.1996.tb02080.x. [2] FAN J Q, LI R Z. Variable selection via nonconcave penalized likelihood and its oracle properties[J]. Journal of the American Statistical Association, 2001, 96(456): 1348-1360. DOI: 10.1198/016214501753382273. [3] ZOU H. The adaptive lasso and its oracle properties[J]. Journal of the American Statistical Association, 2006, 101(476): 1418-1429. DOI: 10.1198/016214506000000735. [4] ZOU H, HASTIE T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2005, 67(2): 301-320. DOI: 10.1111/j.1467-9868.2005.00503.x. [5] WEN C H, WANG X Q, WANG S L. Laplace error penalty-based variable selection in high dimension[J]. Scandinavian Journal of Statistics, 2015, 42(3): 685-700. DOI: 10.1111/sjos.12130. [6] BELLONI A, CHERNOZHUKOV V, HANSEN C, et al. Inference in high-dimensional panel models with an application to Gun control[J]. Journal of Business & Economic Statistics, 2016, 34(4): 590-605. DOI: 10.1080/07350015.2015.1102733. [7] 田果, 杨宜平. 面板数据固定效应线性回归模型的变量选择[J/OL]. 山西大学学报(自然科学版), 1-8[2024-05-21].https://doi.org/10.13451/j.sxu.ns.2024023. [8] WU Y, LIU Y. Variable selection in quantile regression[J]. Statistica Sinica, 2009,19: 801-817. [9] FAN J Q, FAN Y Y, BARUT E. Adaptive robust variable selection[J]. Annals of Statistics, 2014, 42(1): 324-351. DOI: 10.1214/13-AOS1191. [10] ZOU H, YUAN M. Composite quantile regression and the oracle model selection theory[J]. The Annals of Statistics, 2008, 36(3): 1108-1126. DOI: 10.1214/07-aos507. [11] 罗登菊, 戴家佳, 罗兴甸. 随机效应模型的复合分位数回归估计[J]. 贵州大学学报(自然科学版), 2019, 36(2): 96-100, 108. DOI: 10.15958/j.cnki.gdxbzrb.2019.02.19. [12] QU L Q, HAO M L, SUN L Q. Sparse composite quantile regression with ultra-high dimensional heterogeneous data[J]. Statistica Sinica, 2022, 32(1): 459-475. DOI: 10.5705/ss.202020.0115. [13] SONG Y Q, LI Z T, FANG M L. Robust variable selection based on penalized composite quantile regression for high-dimensional single-index models[J]. Mathematics, 2022, 10(12): 2000. DOI: 10.3390/math10122000. [14] 杨晓蓉, 李路, 武皓月, 等. 删失部分线性可加模型的复合分位数回归及应用[J]. 应用概率统计, 2023, 39(4): 604-622. DOI: 10.3969/j.issn.1001-4268.2023.04.010. [15] 李灿, 杨建波, 李荣. 部分线性变系数模型的贝叶斯复合分位数回归[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 117-129. DOI: 10.16088/j.issn.1001-6600.2023102501. [16] 杨宜平, 赵培信, 黄霞. 面板数据下带固定效应的线性回归模型的稳健变量选择[J].数理统计与管理, 2024, 43(1): 50-57. [17] JIANG X J, JIANG J C, SONG X Y. Oracle model selection for nonlinear models based on weighted composite quantile regression accelerated failure time model[J]. Statistica Sinica, 2012, 22(4): 1479-1506. DOI: 10.5705/ss.2010.203. [18] JIANG Y L, LI H. Penalized weighted composite quantile regression in the linear regression model with heavy-tailed autocorrelated errors[J]. Journal of the Korean Statistical Society, 2014, 43(4): 531-543. DOI: 10.1016/j.jkss.2014.03.004. [19] ARELLANO M. Panel data econometrics[M]. Oxford:Oxford University Press, 2003.DOI: 10.1093/0199245282.001.0001. [20] HUNTER D R, LANGE K. A tutorial on MM algorithms[J]. The American Statistician, 2004, 58(1): 30-37. DOI: 10.1198/0003130042836. [21] HUNTER D R, LANGE K. Quantile regression via an MM algorithm[J]. Journal of Computational and Graphical Statistics, 2000, 9(1): 60-77. DOI: 10.1080/10618600.2000.10474866. [22] FEENSTRA R C, INKLAAR R, TIMMER M P. The next generation of the Penn world table[J]. American Economic Review, 2015, 105(10): 3150-3182. DOI: 10.1257/aer.20130954. |
| [1] | 曾庆樊, 秦永松, 黎玉芳. 一类空间面板数据模型的经验似然推断[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 30-42. |
| [2] | 徐萍, 钟思敏, 李斌斌, 熊文俊. 基于稀疏超高维非参数可加模型的条件独立筛选[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 100-107. |
| [3] | 李城恩, 潘晓映, 王美涵, 施建华. 基于区间型数据计量的我国粮食产量研究[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 206-215. |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |