|
广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (4): 90-99.doi: 10.16088/j.issn.1001-6600.2023080803
李若桐1,2, 钟兴国1,2, 刘起霖1,2, 闻炳海1,2*
LI Ruotong1,2, ZHONG Xingguo1,2, LIU Qilin1,2, WEN Binghai1,2*
摘要: 基于格子Boltzmann方法的多相流模型具有相界面自动演化、无需边界积分等优势,在模拟复杂多相流系统中获得广泛的研究和应用。本文引入自由能密度计算分子间的相互作用力,提出一种满足热力学一致性和伽利略不变性的多相流模型。使用该模型预测气液两相共存密度的结果与理论值吻合得很好,误差值为-0.01~0.01,并且在低温度下优于改进的伪势模型。同时该模型也可以模拟较大密度比的气液系统,液相与气相的密度比可达107以上。通过两相分离和液滴撞击液膜等一系列数值模拟,验证了该模型符合伽利略不变性。该模型物理清晰、易于实施,能够结合不同状态方程模拟多相流系统,具有较好的实用性和应用前景。
中图分类号: O359
[1] 何雅玲,李庆,王勇,等.格子Boltzmann方法的理论及应用[M].北京:高等教育出版社,2023. [2] SAHU A, BHOWMICK S. Applications of Lattice Boltzmann in method in multi-component and multi-phase flow: A review[J]. AIP Conference Proceedings, 2020, 2273(1): 030007. DOI: 10.1063/5.0024322. [3] JIANG F, LIU H H, CHEN X, et al. A coupled LBM-DEM method for simulating the multiphase fluid-solid interaction problem[J]. Journal of Computational Physics, 2022, 454: 110963. DOI: 10.1016/j.jcp.2022.110963. [4] 王利民,付少童.颗粒流体系统的格子Boltzmann数值方法研究进展[J].计算力学学报,2022,39(3):332-340.DOI: 10.7511/jslxCMGM202209. [5] 李庆,余悦,唐诗.多相格子Boltzmann方法及其在相变传热中的应用[J].科学通报,2020,65(17):1677-1693.DOI: 10.1360/TB-2019-0769. [6] 凌风如,张超英,陈燕雁,等.LBM中基于半程反弹的统一边界条件研究[J].广西师范大学学报(自然科学版),2020,38(1):70-78.DOI: 10.16088/j.issn.1001-6600.2020.01.009. [7] CHANNOUF S, ADMI Y, JAMI M, et al. Study of two layered immiscible fluids flow in a channel with obstacle by using lattice Boltzmann RK color gradient model[J]. International Journal of Renewable Energy Development, 2023, 12(1): 22-25. DOI: 10.14710/ijred.2023.46696. [8] WANG H L, YUAN X L, LIANG H, et al. A brief review of the phase-field-based lattice Boltzmann method for multiphase flows[J]. Capillarity, 2019, 2(3): 33-52. DOI: 10.26804/capi.2019.03.01. [9] ZHAN C J, CHAI Z H, SHI B C. Phase-field-based multiple-distribution-function lattice Boltzmann method for incompressible two-phase flows[J]. International Journal for Numerical Methods in Fluids, 2023, 95(5): 683-709. DOI: 10.1002/fld.5167. [10] CHANNOUF S, BENHAMOU J, JAMI M. Condensation behaviors of droplet under the gravity effect on hydrophobic surface by using the hybrid thermal pseudopotential LBM model[C] //2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET). Los Alamitos, CA: IEEE Computer Society, 2022: 1-5. DOI: 10.1109/IRASET52964.2022.9737978. [11] MORADI B, GHASEMI S, HOSSEINI MOGHADAM A, et al. Dynamic behavior investigation of capillary rising at various dominant forces using free energy lattice Boltzmann method[J]. Meccanica, 2021, 56(12): 2961-2977. DOI: 10.1007/s11012-021-01426-z. [12] 管羿鸣,季婷婷,杨鑫宇,等.液滴在化学异构表面上侧向弹跳的计算机模拟研究[J].广西师范大学学报(自然科学版),2021,39(2):90-100.DOI: 10.16088/j.issn.1001-6600.2020031201. [13] 许爱国,陈杰,宋家辉,等.多相流系统的离散玻尔兹曼研究进展[J].空气动力学学报,2021,39(3):138-169.DOI: 10.7638/kqdlxxb-2021.0021. [14] SHAN X, CHEN H. Lattice boltzmann model for simulating flows with multiple phases and components[J]. Physical Review E, 1993, 47(3): 1815-1819. DOI: 10.1103/physreve.47.1815. [15] SHAN X, CHEN H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation[J]. Physical Review E, 1994, 49(4): 2941-2948. DOI: 10.1103/physreve.49.2941. [16] LI Q, LUO K H, LI X J. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows[J]. Physical Review E, 2012, 86(1): 016709. DOI: 10.1103/PhysRevE.86.016709. [17] LI Q, LUO K H, LI X J. Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model[J]. Physical Review E, 2013, 87(5): 053301. DOI: 10.1103/PhysRevE.87.053301. [18] KHAJEPOR S, WEN J, CHEN B X. Multipseudopotential interaction: A solution for thermodynamic inconsistency in pseudopotential lattice Boltzmann models[J]. Physical Review E, 2015, 91(2): 023301. DOI: 10.1103/PhysRevE.91.023301. [19] PENG H N, HE X L, ZHANG J M, et al. Cavitation bubble collapse between parallel rigid walls with the three-dimensional multi-relaxation time pseudopotential lattice Boltzmann method[J]. AIP Advances, 2020, 10(10): 105104. DOI: 10.1063/5.0005048. [20] MUKHERJEE A, BASU D N, MONDAL P K. Algorithmic augmentation in the pseudopotential-based lattice Boltzmann method for simulating the pool boiling phenomenon with high-density ratio[J]. Physical Review E, 2021, 103(5): 053302. DOI: 10.1103/PhysRevE.103.053302. [21] SWIFT M R, OSBORN W R, YEOMANS J M. Lattice Boltzmann simulation of nonideal fluids[J]. Physical Review Letters, 1995, 75(5): 830-833. DOI: 10.1103/PhysRevLett.75.830. [22] SWIFT M R, ORLANDINI E, OSBORN W R, et al. Lattice Boltzmann simulations of liquid-gas and binary fluid systems[J]. Physical Review E, 1996, 54(5): 5041-5052. DOI: 10.1103/physreve.54.5041. [23] INAMURO T, KONISHI N, OGINO F. A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach[J]. Computer Physics Communications, 2000, 129(1/3): 32-45. DOI: 10.1016/S0010-4655(00)00090-4. [24] LEE T, FISCHER P F. Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gases[J]. Physical Review E, 2006, 74(4): 046709. DOI: 10.1103/PhysRevE.74.046709. [25] WEN B H, ZHOU X, HE B, et al. Chemical-potential-based lattice Boltzmann method for nonideal fluids[J]. Physical Review E, 2017, 95(6): 063305. DOI: 10.1103/PhysRevE.95.063305. [26] WEN B H, ZHAO L, QIU W, et al. Chemical-potential multiphase lattice Boltzmann method with superlarge density ratios[J]. Physical Review E, 2020, 102(1): 013303. DOI: 10.1103/PhysRevE.102.013303. [27] 杨旭光,汪垒.多相多组分Peng-Robinson流体的正则化格子Boltzmann方法研究及模拟[J].力学学报,2023,55(8):1649-1661.DOI: 10.6052/0459-1879-23-096. [28] GRUSZCZYNSKI G, MITCHELL T, LEONARDI C, et al. A cascaded phase-field lattice Boltzmann model for the simulation of incompressible, immiscible fluids with high density contrast[J].Computers & Mathematics with Applications,2020, 79 (4): 1049-1071. DOI: 10.1016/j.camwa.2019.08.018. [29] ZHENG W H, HONG F J, GONG S. Improved multi-relaxation time thermal pseudo-potential lattice Boltzmann method with multi-block grid and complete unit conversion for liquid-vapor phase transition[J]. Physics of Fluids, 2023, 35(5): 053337. DOI: 10.1063/5.0147074. [30] 李晓庆,范玉泽,刘晓燕.骨架结构对固液相变蓄热性能影响的LBM研究[J].储能科学与技术,2023,12(6):1774-1783.DOI: 10.19799/j.cnki.2095-4239.2022.0776. [31] 高宇航,冯凯,张会臣.基于格子Boltzmann方法的微通道内气液两相流流型和压力降特性研究[J].润滑与密封,2023,48(7):27-33.DOI: 10.3969/j.issn.0254-0150.2023.07.005. [32] QIAN Y H, D’HUMIÈRES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letters, 1992, 17(6): 479-484. DOI: 10.1209/0295-5075/17/6/001. [33] CHEN H D, CHEN S Y, MATTHAEUS W H. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method[J]. Physical Review A, 1992, 45(8): R5339-R5342. DOI: 10.1103/physreva.45.r5339. [34] HE X Y, LUO L S. A priori derivation of the lattice Boltzmann equation[J]. Physical Review E, 1997, 55(6): R6333-R6336. DOI: 10.1103/PhysRevE.55.R6333. [35] HE X Y, LUO L S. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation[J]. Physical Review E, 1997, 56(6): 6811-6817. DOI: 10.1103/PhysRevE.56.6811. [36] D’HUMIÈRES D. Generalized lattice-Boltzmann equations[M] //WEAVER D P, SHIZGAL B D. Rarefied Gas Dynamics: Theory and Simulations. Washington, D.C.: AAIA, 1994: 450-458. DOI: 10.2514/5.9781600866319.0450.0458. [37] LALLEMAND P, LUO L S. Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability[J]. Physical Review E, 2000, 61(6): 6546-6562. DOI: 10.1103/physreve.61.6546. [38] CHAI Z H, SHI B C. Multiple-relaxation-time lattice Boltzmann method for the Navier-Stokes and nonlinear convection-diffusion equations: Modeling, analysis, and elements[J]. Physical Review E, 2020, 102(2): 023306. DOI: 10.1103/PhysRevE.102.023306. [39] KUPERSHTOKH A L, MEDVEDEV D A, KARPOV D I. On equations of state in a lattice Boltzmann method[J]. Computers & Mathematics with Applications, 2009, 58(5): 965-974. DOI: 10.1016/j.camwa.2009.02.024. [40] 邵玉馥,季婷婷,姚怡辰,等.基于晶格Boltzmann方法研究曲面上接触角的测量算法[J].广西师范大学学报(自然科学版),2021,39(6):44-53.DOI: 10.16088/j.issn.1001-6600.2020090601. [41] HUANG Y F, XU X X, ZHANG S J, et al. Thermodynamic characteristics of gas-liquid phase change investigated by lattice Boltzmann method[J]. Applied Thermal Engineering, 2023, 227: 120367. DOI: 10.1016/j.applthermaleng.2023.120367. [42] JAMET D, TORRES D, BRACKBILL J U. On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method[J]. Journal of Computational Physics, 2002, 182(1): 262-276. DOI: 10.1006/jcph.2002.7165. [43] LI J, LE D V, LI H Y, et al. Minimum superheat imposed by equations of state in modelling the phase transition[J]. International Journal of Thermal Sciences, 2023, 189: 108288. DOI: 10.1016/j.ijthermalsci.2023.108288. [44] SOOMRO M, AYALA L F, PENG C, et al. Fugacity-based lattice Boltzmann method for multicomponent multiphase systems[J]. Physical Review E, 2023, 107(1): 015304. DOI: 10.1103/PhysRevE.107.015304. [45] JI T T, PAN Y C, SHAO Y F, et al. Lateral drop rebound on a hydrophobic and chemically heterogeneous surface[J]. Langmuir, 2021, 37(23): 6905-6914. DOI: 10.1021/acs.langmuir.1c00242. [46] LIU Y S, YAO Y C, LI Q Y, et al. Contact angle measurement on curved wetting surfaces in multiphase lattice Boltzmann method[J]. Langmuir, 2023, 39(8): 2974-2984. DOI: 10.1021/acs.langmuir.2c02763. [47] 刁伟,程毅,徐启航,等.基于LBM的大尺度水流运动三维模拟方法及其GPU并行实现[J].水电能源科学,2022,40(7):131-135.DOI: 10.20040/j.cnki.1000-7709.2022.20211767. [48] 崔坤锋.基于三维格子Boltzmann法的微结构表面液滴润湿性研究[D].西安:西安理工大学,2023. [49] 董银宽,袁子豪,靳遵龙.基于LBM不均匀温度下气液两相分离模拟[J].低温与超导,2023,51(7):49-55.DOI: 10.16711/j.1001-7100.2023.07.008. [50] WANG J J, LIANG G T, WANG T J, et al. Interfacial phenomena in impact of droplet array on liquid film[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615: 126292. DOI: 10.1016/j.colsurfa.2021.126292. [51] 鲁舟洋,邢岩.基于格子玻尔兹曼方法的液滴撞击液膜数值模拟[J].陕西水利,2020(11):8-11,18.DOI: 10.16747/j.cnki.cn61-1109/tv.2020.11.003. [52] DU J Y, CHAMAKOS N T, PAPATHANASIOU A G, et al. Initial spreading dynamics of a liquid droplet: the effects of wettability, liquid properties, and substrate topography[J]. Physics of Fluids, 2021, 33(4): 042118. DOI: 10.1063/5.0049409. [53] 赵金想,陈燕雁,覃章荣,等.一种基于化学势LBM多相流模型的改进方法[J].广西师范大学学报(自然科学版),2020,38(2):87-95.DOI: 10.16088/j.issn.1001-6600.2020.02.010. |
[1] | 凌风如, 张超英, 陈燕雁, 覃章荣. LBM中基于半程反弹的统一边界条件研究[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 70-78. |
[2] | 覃章荣, 张超英, 丘滨, 李圆圆, 莫刘刘. 基于CUDA的格子Boltzmann数值模拟加速实现[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 18-24. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |