广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (4): 90-99.doi: 10.16088/j.issn.1001-6600.2023080803

• 研究论文 • 上一篇    下一篇

基于格子Boltzmann方法的自由能密度模型

李若桐1,2, 钟兴国1,2, 刘起霖1,2, 闻炳海1,2*   

  1. 1.教育区块链与智能技术教育部重点实验室(广西师范大学),广西 桂林 541004;
    2.广西多源信息挖掘与安全重点实验室(广西师范大学),广西 桂林 541004
  • 收稿日期:2023-08-08 修回日期:2023-10-04 出版日期:2024-07-25 发布日期:2024-09-05
  • 通讯作者: 闻炳海(1974—),男,河北沧州人,广西师范大学教授,博导。E-mail: oceanwen@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(12272100);广西师范大学研究生创新项目(XYCSR2023021)

Free-Energy-Density Model Based on Lattice Boltzmann Method

LI Ruotong1,2, ZHONG Xingguo1,2, LIU Qilin1,2, WEN Binghai1,2*   

  1. 1. Key Laboratory of Education Blockchain and Intelligent Technology, Ministry of Education (Guangxi Normal University), Guilin Guangxi 541004, China;
    2. Guangxi Key Laboratory of Multi-Source InformationMining and Security (Guangxi Normal University), Guilin Guangxi 541004, China
  • Received:2023-08-08 Revised:2023-10-04 Online:2024-07-25 Published:2024-09-05

摘要: 基于格子Boltzmann方法的多相流模型具有相界面自动演化、无需边界积分等优势,在模拟复杂多相流系统中获得广泛的研究和应用。本文引入自由能密度计算分子间的相互作用力,提出一种满足热力学一致性和伽利略不变性的多相流模型。使用该模型预测气液两相共存密度的结果与理论值吻合得很好,误差值为-0.01~0.01,并且在低温度下优于改进的伪势模型。同时该模型也可以模拟较大密度比的气液系统,液相与气相的密度比可达107以上。通过两相分离和液滴撞击液膜等一系列数值模拟,验证了该模型符合伽利略不变性。该模型物理清晰、易于实施,能够结合不同状态方程模拟多相流系统,具有较好的实用性和应用前景。

关键词: 格子Boltzmann方法, 多相流, 自由能模型, 自由能密度, 大密度比

Abstract: The multiphase flow model based on the lattice Boltzmann method has the advantages of automatic evolution of the phase interface and no boundary integration. It has been widely studied and applied in the simulation of complex multiphase fluid systems. In this paper, a multiphase flow model satisfying thermodynamic consistency and Galilean invariance is proposed by introducing the free energy density to calculate the interaction force between molecules. The results of using this model to predict the liquid-gas two-phase coexistence densities are in good agreement with theoretical values. At low temperatures, they are better than the improved pseudopotential model. At the same time, the model can also be used for the simulation of multi-phase flow systems with large density ratios. The model's compliance with Galilean invariance is verified by a series of numerical simulations such as speckle map and droplet impact on the liquid film. The model is physically clear and easy to implement, then, it can simulate multiphase flow systems with different equations of state, which has a better potential for practicality and application.

Key words: lattice Boltzmann method, multiphase flow, free energy model, free energy density, large density ratio

中图分类号:  O359

[1] 何雅玲,李庆,王勇,等.格子Boltzmann方法的理论及应用[M].北京:高等教育出版社,2023.
[2] SAHU A, BHOWMICK S. Applications of Lattice Boltzmann in method in multi-component and multi-phase flow: A review[J]. AIP Conference Proceedings, 2020, 2273(1): 030007. DOI: 10.1063/5.0024322.
[3] JIANG F, LIU H H, CHEN X, et al. A coupled LBM-DEM method for simulating the multiphase fluid-solid interaction problem[J]. Journal of Computational Physics, 2022, 454: 110963. DOI: 10.1016/j.jcp.2022.110963.
[4] 王利民,付少童.颗粒流体系统的格子Boltzmann数值方法研究进展[J].计算力学学报,2022,39(3):332-340.DOI: 10.7511/jslxCMGM202209.
[5] 李庆,余悦,唐诗.多相格子Boltzmann方法及其在相变传热中的应用[J].科学通报,2020,65(17):1677-1693.DOI: 10.1360/TB-2019-0769.
[6] 凌风如,张超英,陈燕雁,等.LBM中基于半程反弹的统一边界条件研究[J].广西师范大学学报(自然科学版),2020,38(1):70-78.DOI: 10.16088/j.issn.1001-6600.2020.01.009.
[7] CHANNOUF S, ADMI Y, JAMI M, et al. Study of two layered immiscible fluids flow in a channel with obstacle by using lattice Boltzmann RK color gradient model[J]. International Journal of Renewable Energy Development, 2023, 12(1): 22-25. DOI: 10.14710/ijred.2023.46696.
[8] WANG H L, YUAN X L, LIANG H, et al. A brief review of the phase-field-based lattice Boltzmann method for multiphase flows[J]. Capillarity, 2019, 2(3): 33-52. DOI: 10.26804/capi.2019.03.01.
[9] ZHAN C J, CHAI Z H, SHI B C. Phase-field-based multiple-distribution-function lattice Boltzmann method for incompressible two-phase flows[J]. International Journal for Numerical Methods in Fluids, 2023, 95(5): 683-709. DOI: 10.1002/fld.5167.
[10] CHANNOUF S, BENHAMOU J, JAMI M. Condensation behaviors of droplet under the gravity effect on hydrophobic surface by using the hybrid thermal pseudopotential LBM model[C] //2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET). Los Alamitos, CA: IEEE Computer Society, 2022: 1-5. DOI: 10.1109/IRASET52964.2022.9737978.
[11] MORADI B, GHASEMI S, HOSSEINI MOGHADAM A, et al. Dynamic behavior investigation of capillary rising at various dominant forces using free energy lattice Boltzmann method[J]. Meccanica, 2021, 56(12): 2961-2977. DOI: 10.1007/s11012-021-01426-z.
[12] 管羿鸣,季婷婷,杨鑫宇,等.液滴在化学异构表面上侧向弹跳的计算机模拟研究[J].广西师范大学学报(自然科学版),2021,39(2):90-100.DOI: 10.16088/j.issn.1001-6600.2020031201.
[13] 许爱国,陈杰,宋家辉,等.多相流系统的离散玻尔兹曼研究进展[J].空气动力学学报,2021,39(3):138-169.DOI: 10.7638/kqdlxxb-2021.0021.
[14] SHAN X, CHEN H. Lattice boltzmann model for simulating flows with multiple phases and components[J]. Physical Review E, 1993, 47(3): 1815-1819. DOI: 10.1103/physreve.47.1815.
[15] SHAN X, CHEN H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation[J]. Physical Review E, 1994, 49(4): 2941-2948. DOI: 10.1103/physreve.49.2941.
[16] LI Q, LUO K H, LI X J. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows[J]. Physical Review E, 2012, 86(1): 016709. DOI: 10.1103/PhysRevE.86.016709.
[17] LI Q, LUO K H, LI X J. Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model[J]. Physical Review E, 2013, 87(5): 053301. DOI: 10.1103/PhysRevE.87.053301.
[18] KHAJEPOR S, WEN J, CHEN B X. Multipseudopotential interaction: A solution for thermodynamic inconsistency in pseudopotential lattice Boltzmann models[J]. Physical Review E, 2015, 91(2): 023301. DOI: 10.1103/PhysRevE.91.023301.
[19] PENG H N, HE X L, ZHANG J M, et al. Cavitation bubble collapse between parallel rigid walls with the three-dimensional multi-relaxation time pseudopotential lattice Boltzmann method[J]. AIP Advances, 2020, 10(10): 105104. DOI: 10.1063/5.0005048.
[20] MUKHERJEE A, BASU D N, MONDAL P K. Algorithmic augmentation in the pseudopotential-based lattice Boltzmann method for simulating the pool boiling phenomenon with high-density ratio[J]. Physical Review E, 2021, 103(5): 053302. DOI: 10.1103/PhysRevE.103.053302.
[21] SWIFT M R, OSBORN W R, YEOMANS J M. Lattice Boltzmann simulation of nonideal fluids[J]. Physical Review Letters, 1995, 75(5): 830-833. DOI: 10.1103/PhysRevLett.75.830.
[22] SWIFT M R, ORLANDINI E, OSBORN W R, et al. Lattice Boltzmann simulations of liquid-gas and binary fluid systems[J]. Physical Review E, 1996, 54(5): 5041-5052. DOI: 10.1103/physreve.54.5041.
[23] INAMURO T, KONISHI N, OGINO F. A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach[J]. Computer Physics Communications, 2000, 129(1/3): 32-45. DOI: 10.1016/S0010-4655(00)00090-4.
[24] LEE T, FISCHER P F. Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gases[J]. Physical Review E, 2006, 74(4): 046709. DOI: 10.1103/PhysRevE.74.046709.
[25] WEN B H, ZHOU X, HE B, et al. Chemical-potential-based lattice Boltzmann method for nonideal fluids[J]. Physical Review E, 2017, 95(6): 063305. DOI: 10.1103/PhysRevE.95.063305.
[26] WEN B H, ZHAO L, QIU W, et al. Chemical-potential multiphase lattice Boltzmann method with superlarge density ratios[J]. Physical Review E, 2020, 102(1): 013303. DOI: 10.1103/PhysRevE.102.013303.
[27] 杨旭光,汪垒.多相多组分Peng-Robinson流体的正则化格子Boltzmann方法研究及模拟[J].力学学报,2023,55(8):1649-1661.DOI: 10.6052/0459-1879-23-096.
[28] GRUSZCZYNSKI G, MITCHELL T, LEONARDI C, et al. A cascaded phase-field lattice Boltzmann model for the simulation of incompressible, immiscible fluids with high density contrast[J].Computers & Mathematics with Applications,2020, 79 (4): 1049-1071. DOI: 10.1016/j.camwa.2019.08.018.
[29] ZHENG W H, HONG F J, GONG S. Improved multi-relaxation time thermal pseudo-potential lattice Boltzmann method with multi-block grid and complete unit conversion for liquid-vapor phase transition[J]. Physics of Fluids, 2023, 35(5): 053337. DOI: 10.1063/5.0147074.
[30] 李晓庆,范玉泽,刘晓燕.骨架结构对固液相变蓄热性能影响的LBM研究[J].储能科学与技术,2023,12(6):1774-1783.DOI: 10.19799/j.cnki.2095-4239.2022.0776.
[31] 高宇航,冯凯,张会臣.基于格子Boltzmann方法的微通道内气液两相流流型和压力降特性研究[J].润滑与密封,2023,48(7):27-33.DOI: 10.3969/j.issn.0254-0150.2023.07.005.
[32] QIAN Y H, D’HUMIÈRES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letters, 1992, 17(6): 479-484. DOI: 10.1209/0295-5075/17/6/001.
[33] CHEN H D, CHEN S Y, MATTHAEUS W H. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method[J]. Physical Review A, 1992, 45(8): R5339-R5342. DOI: 10.1103/physreva.45.r5339.
[34] HE X Y, LUO L S. A priori derivation of the lattice Boltzmann equation[J]. Physical Review E, 1997, 55(6): R6333-R6336. DOI: 10.1103/PhysRevE.55.R6333.
[35] HE X Y, LUO L S. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation[J]. Physical Review E, 1997, 56(6): 6811-6817. DOI: 10.1103/PhysRevE.56.6811.
[36] D’HUMIÈRES D. Generalized lattice-Boltzmann equations[M] //WEAVER D P, SHIZGAL B D. Rarefied Gas Dynamics: Theory and Simulations. Washington, D.C.: AAIA, 1994: 450-458. DOI: 10.2514/5.9781600866319.0450.0458.
[37] LALLEMAND P, LUO L S. Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability[J]. Physical Review E, 2000, 61(6): 6546-6562. DOI: 10.1103/physreve.61.6546.
[38] CHAI Z H, SHI B C. Multiple-relaxation-time lattice Boltzmann method for the Navier-Stokes and nonlinear convection-diffusion equations: Modeling, analysis, and elements[J]. Physical Review E, 2020, 102(2): 023306. DOI: 10.1103/PhysRevE.102.023306.
[39] KUPERSHTOKH A L, MEDVEDEV D A, KARPOV D I. On equations of state in a lattice Boltzmann method[J]. Computers & Mathematics with Applications, 2009, 58(5): 965-974. DOI: 10.1016/j.camwa.2009.02.024.
[40] 邵玉馥,季婷婷,姚怡辰,等.基于晶格Boltzmann方法研究曲面上接触角的测量算法[J].广西师范大学学报(自然科学版),2021,39(6):44-53.DOI: 10.16088/j.issn.1001-6600.2020090601.
[41] HUANG Y F, XU X X, ZHANG S J, et al. Thermodynamic characteristics of gas-liquid phase change investigated by lattice Boltzmann method[J]. Applied Thermal Engineering, 2023, 227: 120367. DOI: 10.1016/j.applthermaleng.2023.120367.
[42] JAMET D, TORRES D, BRACKBILL J U. On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method[J]. Journal of Computational Physics, 2002, 182(1): 262-276. DOI: 10.1006/jcph.2002.7165.
[43] LI J, LE D V, LI H Y, et al. Minimum superheat imposed by equations of state in modelling the phase transition[J]. International Journal of Thermal Sciences, 2023, 189: 108288. DOI: 10.1016/j.ijthermalsci.2023.108288.
[44] SOOMRO M, AYALA L F, PENG C, et al. Fugacity-based lattice Boltzmann method for multicomponent multiphase systems[J]. Physical Review E, 2023, 107(1): 015304. DOI: 10.1103/PhysRevE.107.015304.
[45] JI T T, PAN Y C, SHAO Y F, et al. Lateral drop rebound on a hydrophobic and chemically heterogeneous surface[J]. Langmuir, 2021, 37(23): 6905-6914. DOI: 10.1021/acs.langmuir.1c00242.
[46] LIU Y S, YAO Y C, LI Q Y, et al. Contact angle measurement on curved wetting surfaces in multiphase lattice Boltzmann method[J]. Langmuir, 2023, 39(8): 2974-2984. DOI: 10.1021/acs.langmuir.2c02763.
[47] 刁伟,程毅,徐启航,等.基于LBM的大尺度水流运动三维模拟方法及其GPU并行实现[J].水电能源科学,2022,40(7):131-135.DOI: 10.20040/j.cnki.1000-7709.2022.20211767.
[48] 崔坤锋.基于三维格子Boltzmann法的微结构表面液滴润湿性研究[D].西安:西安理工大学,2023.
[49] 董银宽,袁子豪,靳遵龙.基于LBM不均匀温度下气液两相分离模拟[J].低温与超导,2023,51(7):49-55.DOI: 10.16711/j.1001-7100.2023.07.008.
[50] WANG J J, LIANG G T, WANG T J, et al. Interfacial phenomena in impact of droplet array on liquid film[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615: 126292. DOI: 10.1016/j.colsurfa.2021.126292.
[51] 鲁舟洋,邢岩.基于格子玻尔兹曼方法的液滴撞击液膜数值模拟[J].陕西水利,2020(11):8-11,18.DOI: 10.16747/j.cnki.cn61-1109/tv.2020.11.003.
[52] DU J Y, CHAMAKOS N T, PAPATHANASIOU A G, et al. Initial spreading dynamics of a liquid droplet: the effects of wettability, liquid properties, and substrate topography[J]. Physics of Fluids, 2021, 33(4): 042118. DOI: 10.1063/5.0049409.
[53] 赵金想,陈燕雁,覃章荣,等.一种基于化学势LBM多相流模型的改进方法[J].广西师范大学学报(自然科学版),2020,38(2):87-95.DOI: 10.16088/j.issn.1001-6600.2020.02.010.
[1] 凌风如, 张超英, 陈燕雁, 覃章荣. LBM中基于半程反弹的统一边界条件研究[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 70-78.
[2] 覃章荣, 张超英, 丘滨, 李圆圆, 莫刘刘. 基于CUDA的格子Boltzmann数值模拟加速实现[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 18-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵洁, 宋爽, 武斌. 图像USM锐化取证与反取证技术综述[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 1 -16 .
[2] 艾聪聪, 龚国利, 焦小雨, 田露, 盖中朝, 缑敬轩, 李慧. 毕赤酵母作为基础研究的新兴模式生物研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 17 -26 .
[3] 翟言豪, 王燕舞, 李强, 李景坤. 基于CiteSpace的三维荧光光谱技术对内陆水体中溶解性有机质研究的进展[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 34 -46 .
[4] 陈丽, 唐明珠, 郭胜辉. 智能汽车信息物理系统状态估计与执行器攻击重构[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 59 -69 .
[5] 李成乾, 石晨, 邓敏艺. 基于元胞自动机的Brugada综合征患者心电信号研究[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 86 -98 .
[6] 吕辉, 吕卫峰. 基于改进YOLOv5的眼底出血点检测算法[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 99 -107 .
[7] 易见兵, 彭鑫, 曹锋, 李俊, 谢唯嘉. 多尺度特征融合的点云配准算法研究[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 108 -120 .
[8] 李莉, 李昊泽, 李涛. 基于Raft的多主节点拜占庭容错共识机制[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 121 -130 .
[9] 赵小梅, 丁勇, 王海涛. 基于改进帝王蝶算法的最大似然DOA估计[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 131 -140 .
[10] 朱艳, 蔡静, 龙芳. 逐步Ⅰ型混合截尾下复合Rayleigh分布竞争失效产品部分步加寿命试验的统计分析[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 159 -169 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发