广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (4): 100-114.doi: 10.16088/j.issn.1001-6600.2023052501

• 研究论文 • 上一篇    下一篇

含空间自相关误差的空间自回归模型的调整经验似然推断

唐洁1, 秦永松1,2*   

  1. 1.广西师范大学 数学与统计学院, 广西 桂林 541006;
    2.广西多源信息挖掘与安全重点实验室(广西师范大学),广西 桂林 541004
  • 收稿日期:2023-05-25 修回日期:2023-07-29 出版日期:2024-07-25 发布日期:2024-09-05
  • 通讯作者: 秦永松(1964—), 男, 湖北鄂州人, 广西师范大学教授, 博导。E-mail:ysqin@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(12061017,12161009); 广西多源信息挖掘与安全重点实验室系统性研究课题(22-A-01-01); 广西研究生教育创新计划项目(YJSCXP202104)

Adjusted Empirical Likelihood for Spatial Autoregressive Models with Spatial Autoregressive Disturbances

TANG Jie1, QIN Yongsong1,2*   

  1. 1. School of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. Guangxi Key Lab of Multi-source Information Mining & Security (Guangxi Normal University), Guilin Guangxi 541004, China
  • Received:2023-05-25 Revised:2023-07-29 Online:2024-07-25 Published:2024-09-05

摘要: 本文研究含空间自相关误差的空间自回归模型的调整经验似然推断问题。利用调整经验似然方法,构造出含空间自相关误差的空间自回归模型的调整经验似然比统计量,证明调整经验似然统计量的极限分布为卡方分布,并模拟比较调整经验似然与一般经验似然方法的优劣。模拟结果表明:调整经验似然比一般经验似然置信域的覆盖精度更高,计算速度更快。在样本容量较大时,无论误差项是否服从正态分布,一般经验似然方法和调整经验似然方法均可;在样本容量较小时,推荐使用调整经验似然方法。

关键词: 空间自相关误差, 空间SARAR模型, 调整经验似然, 覆盖率

Abstract: The adjustment empirical likelihood inference of spatial autoregressive models with spatial autoregressive errors is studied in this paper. Using adjusted empirical likelihood method, an adjusted empirical likelihood ratio statistic is constructed for spatial autoregressive models with spatial autoregressive errors. It is shown that the limit distribution of the adjusted empirical likelihood statistic is a chi-squared distribution. The advantages and disadvantages of the adjusted empirical likelihood method are compared with the general empirical likelihood method through simulations. Simulation results show that the adjusted empirical likelihood region has higher coverage accuracy and is faster in implementation than that of the general empirical likelihood. When the sample size is large, both general empirical likelihood method and adjusted empirical likelihood method can be used whether the error term follows a normal distribution or not. But when the sample size is small, it is recommended to use the adjusted empirical likelihood method.

Key words: spatial autoregressive error, spatial ARAR model, adjusted empirical likelihood, confidence region

中图分类号:  O212.1

[1] TOBLER W R. A computer movie simulating urban growth in the Detroit region[J]. Economic Geography, 1970, 46(sup1): 234-240.
[2] CRESSIE N A C. Statistics for spatial data[M]. New York: Wiley, 1993.
[3] CLIFF A D, ORD J K. Spatial autocorrelation[M]. London: Pion Ltd, 1973.
[4] ANSELIN L. Spatial econometrics: methods and models[M]. Dordrecht: Springer, 1988.
[5] KELEJIAN H H, PRUCHA I R. A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances[J]. The Journal of Real Estate Finance and Economics,1998, 17(1): 99-121.
[6] KELEJIAN H H, PRUCHA I R. A generalized moments estimator for the autoregressive parameter in a spatial model[J]. International Economic Review, 1999, 40(2): 509-533.
[7] LEE L F. Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models[J]. Econometrica, 2004, 72(6): 1899-1925.
[8] 陶长琪, 徐茉. 固定效应时异系数广义空间自回归模型的估计与模拟[J]. 数理统计与管理, 2023, 42(1): 65-82.
[9] 陈青青, 龙志和, 林光平. 面板数据空间误差分量模型的GMM估计及其应用[J]. 数理统计与管理, 2013, 32(1): 68-80.
[10] 陶长琪, 周璇. 含空间自回归误差项的空间动态面板模型的有效估计[J].数量经济技术经济研究, 2016, 33(4): 126-144.
[11] ANSELIN L. Thirty years of spatial econometrics[J]. Papers in Regional Science, 2010, 89(1): 3-26.
[12] ARBIA G. Spatial econometrics: statistical foundations and applications to regional convergence[M]. Berlin: Springer, 2006.
[13] LEE L F, YU J H. Estimation of spatial autoregressive panel data models with fixed effects[J]. Journal of Econometrics, 2010, 154(2): 165-185.
[14] LEE L F. Best spatial two-stage least squares estimators for a spatial autoregressive model with autoregressive disturbances[J]. Econometric Reviews, 2003, 22(4): 307-335.
[15] QU X, LEE L F, YU J H. QML estimation of spatial dynamic panel data models with endogenous time varying spatial weights matrices[J]. Journal of Econometrics, 2017, 197(2): 173-201.
[16] LIU X D, LEE L F, BOLLINGER C R, et al. An efficient GMM estimator of spatial autoregressive models[J]. Journal of Econometrics, 2010, 159(2): 303-319.
[17] LEE L F, YU J H. Efficient GMM estimation of spatial dynamic panel data models with fixed effects[J]. Journal of Econometrics, 2014, 180(2): 174-197.
[18] MA Y Y, GUO S J, WANG H S. Sparse spatio-temporal autoregressions by profiling and bagging[J]. Journal of Econometrics, 2023, 232(1): 132-147.
[19] OWEN A B. Empirical likelihood ratio confidence intervals for a single functional[J]. Biometrika, 1988, 75(2): 237-249.
[20] OWEN A. Empirical likelihood ratio confidence regions[J]. The Annals of Statistics, 1990, 18(1): 90-120.
[21] QIN J, LAWLESS J. Empirical likelihood and general estimating equations[J]. The Annals of Statistics, 1994, 22(1): 300-325.
[22] 张军舰. 非参数似然方法及其应用研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 150-159.
[23] OWEN A. Empirical likelihood for linear models[J]. The Annals of Statistics, 1991, 19(4): 1725-1747.
[24] KOLACZYK E D. Empirical likelihood for generalized linear models[J]. Statistica Sinica, 1994, 4: 199-218.
[25] QIN Y S. Empirical likelihood ratio confidence regions in a partly linear model[J]. Chinese Joural of Applied Probability and Statistics, 1999, 15(4): 363-369.
[26] JIN F, LEE L F. GEL estimation and tests of spatial autoregressive models[J]. Journal of Econometrics, 2019, 208(2): 585-612.
[27] QIN Y S. Empirical likelihood for spatial autoregressive models with spatial autoregressive disturbances[J]. Sankhya A, 2021, 83(1): 1-25.
[28] LI Y H, QIN Y S, LI Y. Empirical likelihood for nonparametric regression models with spatial autoregressive errors[J]. Journal of the Korean Statistical Society, 2021, 50(2): 447-478.
[29] RONG J R, LIU Y, QIN Y S, et al. Empirical likelihood for spatial dynamic panel data models with spatial lags and spatial errors[J]. Communications in Statistics-Theory and Methods, 2023, 52(18): 6658-6683.
[30] 曾庆樊, 秦永松, 黎玉芳. 一类空间面板数据模型的经验似然推断[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 30-42.
[31] 陶阳, 何帮强. 空间自回归固定效应面板数据模型的经验似然[J]. 安徽工程大学学报, 2022, 37(6): 75-84.
[32] 李龙飞. 空间计量经济学中的空间自回归模型[J]. 计量经济学报, 2021, 1(1): 36-65.
[33] 秦永松, 雷庆祝. 空间计量经济模型的经验似然研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 138-149.
[34] TSAO M. Bounds on coverage probabilities of the empirical likelihood ratio confidence regions[J]. The Annals of Statistics, 2004, 32(3): 1215-1221.
[35] OWEN A B. Empirical Likelihood[M]. Boca Raton: Chapman and Hall, 2001.
[36] BARTOLUCCI F. A penalized version of the empirical likelihood ratio for the population mean[J]. Statistics & Probability Letters, 2007, 77(1): 104-110.
[37] CHEN J H, VARIYATH A M, ANRAHAM B, et al. Adjusted empirical likelihood and its properties[J]. Journal of Computational and Craphical Statistics, 2008, 17(2): 426-443.
[38] EMERSON S C, OWEN A B. Calibration of the empirical likelihood method for a vector mean[J]. Electronic Journal of Statistics, 2009, 3: 1161-1192.
[39] KELEJIAN H H, PRUCHA I R. On the asymptotic distribution of the moran I test statistic with applications[J]. Journal of Econometrics, 2001, 104(2): 219-257.
[40] CHEN J, SITTER R R, WU C, et al. Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys[J]. Biometrika, 2002, 89(1): 230-237.
[41] 龚德鑫, 刘涛, 朱志华, 等. 空间自回归分析及其在R软件中的实现[J]. 华南预防医学, 2020, 46(4): 450-453.
[1] 滕志军, 吕金玲, 郭力文, 许媛媛. 基于改进粒子群算法的无线传感器网络覆盖策略[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 9-16.
[2] 黄恒杰. 传感器中基于连通支配集的区域覆盖控制算法[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 19-25.
[3] 江绍锋, 黄金清, 于晓宇, 李云飞, 陆祖军. 产酸克雷伯氏菌基因组文库的构建及鉴定[J]. 广西师范大学学报(自然科学版), 2016, 34(2): 151-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵洁, 宋爽, 武斌. 图像USM锐化取证与反取证技术综述[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 1 -16 .
[2] 艾聪聪, 龚国利, 焦小雨, 田露, 盖中朝, 缑敬轩, 李慧. 毕赤酵母作为基础研究的新兴模式生物研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 17 -26 .
[3] 翟言豪, 王燕舞, 李强, 李景坤. 基于CiteSpace的三维荧光光谱技术对内陆水体中溶解性有机质研究的进展[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 34 -46 .
[4] 陈丽, 唐明珠, 郭胜辉. 智能汽车信息物理系统状态估计与执行器攻击重构[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 59 -69 .
[5] 李成乾, 石晨, 邓敏艺. 基于元胞自动机的Brugada综合征患者心电信号研究[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 86 -98 .
[6] 吕辉, 吕卫峰. 基于改进YOLOv5的眼底出血点检测算法[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 99 -107 .
[7] 易见兵, 彭鑫, 曹锋, 李俊, 谢唯嘉. 多尺度特征融合的点云配准算法研究[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 108 -120 .
[8] 李莉, 李昊泽, 李涛. 基于Raft的多主节点拜占庭容错共识机制[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 121 -130 .
[9] 赵小梅, 丁勇, 王海涛. 基于改进帝王蝶算法的最大似然DOA估计[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 131 -140 .
[10] 朱艳, 蔡静, 龙芳. 逐步Ⅰ型混合截尾下复合Rayleigh分布竞争失效产品部分步加寿命试验的统计分析[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 159 -169 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发