广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (6): 13-28.doi: 10.16088/j.issn.1001-6600.2024101701

• 物理与电子工程 • 上一篇    下一篇

基于HO-CNN-BiLSTM-Transformer模型的风机叶片结冰故障诊断

韩华彬, 高丙朋*, 蔡鑫, 孙凯   

  1. 新疆大学 电气工程学院,新疆 乌鲁木齐 830017
  • 收稿日期:2024-10-17 修回日期:2025-01-09 发布日期:2025-11-19
  • 通讯作者: 高丙朋(1979—),男,新疆乌鲁木齐人,新疆大学副教授。E-mail: xjugaobp@xju.edu.cn
  • 基金资助:
    新疆自然科学基金(2024D01C28)

Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model

HAN Huabin, GAO Bingpeng*, CAI Xin, SUN Kai   

  1. School of Electrical Engineering, Xinjiang University, Urumqi Xinjiang 830017, China
  • Received:2024-10-17 Revised:2025-01-09 Published:2025-11-19

摘要: 针对风力发电机叶片运行监测数据在时序性分析与数据不平衡性研究方面的不足,本文提出一种基于特征工程和HO-CNN-BiLSTM-Transformer(Hippopotamus optimization-CNN-BiLSTM-Transformer)的风机叶片结冰故障检测方法。首先通过借助叶片结冰的机理模型进行特征工程,构建叶片结冰的机理变量;其次,构建CNN-BiLSTM-Transformer检测模型,挖掘监控与数据采集系统(supervisory control and data acquisition, SCADA)数据之间的时序信息,最后利用Hippopotamus optimization(HO)算法优化模型的超参数,提高模型的诊断性能和泛化性。实验结果表明,该检测方法的精确率、召回率、F1分数分别达到0.983 8、0.990 2、0.987 0,优于其他对比模型和优化算法,可以为风电场运营提供优化维护策略的信息,确保风机在寒冷条件下安全高效运行。

关键词: 风机叶片, 叶片结冰, 故障诊断, 特征工程, 不平衡数据, 河马优化算法, 深度学习

Abstract: To address the shortcomings in time-series analysis and data imbalance research for operational monitoring data of wind turbine blades, this paper proposes a fault detection method for blade icing based on feature engineering and a HO-CNN-BiLSTM-Transformer framework. Firstly, feature engineering is employed by using the blade icing mechanism model to construct mechanism variables for blade icing. Secondly, a CNN-BiLSTM-Transformer detection model is developed to explore the temporal information in supervisory control and data acquisition (SCADA) system data. Finally, the Hippopotamus optimization (HO) algorithm is utilized to optimize the model’s hyperparameters, enhancing its diagnostic performance and generalization ability. Experimental results demonstrate that this detection method achieves precision, recall, and F1 scores of 0.983 8, 0.990 2, and 0.987 0, respectively, outperforming other comparative models and optimization algorithms. This method provides valuable insights for optimizing maintenance strategies in wind farms, ensuring safe and efficient operation of wind turbines under cold conditions.

Key words: wind turbines, blade icing, fault diagnosis, feature engineering, imbalanced data, hippopotamus optimization algorithm, deep learning

中图分类号:  TM315;TP18

[1] ROGA S, BARDHAN S, KUMAR Y, et al. Recent technology and challenges of wind energy generation: a review[J]. Sustainable Energy Technologies and Assessments, 2022, 52: 102239. DOI: 10.1016/j.seta.2022.102239.
[2] 全球发展与碳中和课题组. 引领全球气候治理和推进能源转型的战略思考[J]. 国际经济评论, 2024(5): 39-54, 5.
[3] GAO L Y, DASARI T, HONG J R. Wind farm icing loss forecast pertinent to winter extremes[J]. Sustainable Energy Technologies and Assessments, 2022, 50: 101872. DOI: 10.1016/j.seta.2021.101872.
[4] 杜文杰, 关梦茜, 江源, 等. 新疆风力发电减碳效益全生命周期评估[J]. 生态学报, 2024, 44(8): 3293-3302. DOI: 10.20103/j.stxb.202306301400.
[5] WEI K X, YANG Y, ZUO H Y, et al. A review on ice detection technology and ice elimination technology for wind turbine[J]. Wind Energy, 2020, 23(3): 433-457. DOI: 10.1002/we.2427.
[6] KIM D G, UMESH S, SONG M,et al. A fiber-optic ice detection system for large-scale wind turbine blades[EB/OL]. (2017-09-06)[2024-12-18]. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10374/2273664/A-fiber-optic-ice-detection-system-for-large-scale-wind/10.1117/12.2273664.short. DOI: 10.1117/12.2273664.
[7] GÓMEZ MUÑOZ C Q, GARCÍA MÁRQUEZ F P, SÁNCHEZ TOMÁS J M. Ice detection using thermal infrared radiometry on wind turbine blades[J]. Measurement, 2016, 93: 157-163. DOI: 10.1016/j.measurement.2016.06.064.
[8] TAUTZ-WEINERT J, WATSON S J. Using SCADA data for wind turbine condition monitoring-a review[J]. IET Renewable Power Generation, 2017, 11(4): 382-394. DOI: 10.1049/iet-rpg.2016.0248.
[9] ZHANG L J, LIU K, WANG Y F, et al. Ice detection model of wind turbine blades based on random forest classifier[J]. Energies, 2018, 11(10): 2548. DOI: 10.3390/en11102548.
[10] 海涛, 范恒, 王楷杰, 等. 基于PSO-SVM算法的风电机组结冰故障诊断[J]. 智慧电力, 2021, 49(4): 1-6, 74. DOI: 10.3969/j.issn.1673-7598.2021.04.002.
[11] TAO T, LIU Y Q, QIAO Y H, et al. Wind turbine blade icing diagnosis using hybrid features and Stacked-XGBoost algorithm[J]. Renewable Energy, 2021, 180: 1004-1013. DOI: 10.1016/j.renene.2021.09.008.
[12] YANG X Y, HUANG X X, GAO X X, et al. Icing diagnosis model for wind turbine blade based on feature optimization and 1D-convolutional neural network[J]. Journal of Renewable and Sustainable Energy, 2022, 14(3): 033303. DOI: 10.1063/5.0078364.
[13] TAO C, TAO T, HE S K, et al. Wind turbine blade icing diagnosis using B-SMOTE-Bi-GRU and RFE combined with icing mechanism[J]. Renewable Energy, 2024, 221: 119741. DOI: 10.1016/j.renene.2023.119741.
[14] 刘俊, 姚邹静, 赵春晖. 基于慢特征分析的风机多模型叶片结冰检测[J]. 控制工程, 2020, 27(11): 1987-1994. DOI: 10.14107/j.cnki.kzgc.20190349.
[15] LI M L, HE X. An accurate detection method for turbine icing issues using LSTM network[J]. IOP Conference Series: Earth and Environmental Science, 2019, 237: 032109. DOI: 10.1088/1755-1315/237/3/032109.
[16] WANG L, HE Y G, ZHOU Y Z, et al. A novel approach to wind turbine blade icing detection with limited sensor data via spatiotemporal attention Siamese network[J]. IEEE Transactions on Industrial Informatics, 2024, 20(6): 8993-9005. DOI: 10.1109/TII.2024.3378775.
[17] YUE R X, JIANG G Q, JIN X H, et al. Spatio-temporal feature alignment transfer learning for cross-turbine blade icing detection of wind turbines[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 3507717. DOI: 10.1109/TIM.2024.3350147.
[18] 薛建凯. 一种新型的群智能优化技术的研究与应用: 麻雀搜索算法[D]. 上海: 东华大学, 2020. DOI: 10.27012/d.cnki.gdhuu.2020.000178.
[19] KENNEDY J, EBERHART R. Particle swarm optimization[C] //Proceedings of ICNN′95-International Conference on Neural Networks. Piscataway, NJ: IEEE, 2002: 1942-1948. DOI: 10.1109/ICNN.1995.488968.
[20] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. DOI: 10.1016/j.advengsoft.2013.12.007.
[21] ABDOLLAHZADEH B, GHAREHCHOPOGH F S, MIRJALILI S. African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems[J]. Computers & Industrial Engineering, 2021, 158: 107408. DOI: 10.1016/j.cie.2021.107408.
[22] 蒋丽英, 高铭悦, 李贺. 基于SSA-VMD和SDP的双通道CNN轴承故障识别方法[J]. 机电工程, 2025, 42(2): 257-266.
[23] GUO J C, SONG X W, TANG S F, et al. Fault diagnosis of wind turbine blade icing based on feature engineering and the PSO-ConvLSTM-transformer[J]. Ocean Engineering, 2024, 302: 117726. DOI: 10.1016/j.oceaneng.2024.117726.
[24] 栾孝驰, 徐石, 沙云东, 等. 基于GWO-NLM与CEEMDAN的滚动轴承故障诊断方法[J]. 航空动力学报, 2023, 38(5): 1185-1197. DOI: 10.13224/j.cnki.jasp.20210547.
[25] 陈闻鹤, 程龙生, 常志朋, 等. 改进BiLSTM-GRU-DMD的风机叶片结冰故障检测与状态评估模型[J]. 工业工程与管理, 2023, 28(5): 108-118. DOI: 10.19495/j.cnki.1007-5429.2023.05.012.
[26] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. DOI: 10.1162/neco.1997.9.8.173.
[27] VASWANI A, SHAZEER N, PARMAR N, et al. Attention Is All You Need[EB/OL]. (2017-07-12-06)[2024-12-18]. https://arxiv.org/abs/1706.03762.
[28] LIN T Y, GOYAL P, GIRSHICK R et al. Focal Loss for Dense Object Detection[EB/OL].(2017-08-07)[2024-12-18]. https://arxiv.org/abs/1708.02002.
[29] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357. DOI: 10.1613/jair.953.
[30] AMIRI M H, MEHRABI HASHJIN N, MONTAZERI M, et al. Hippopotamus optimization algorithm: a novel nature-inspired optimization algorithm[J]. Scientific Reports, 2024, 14(1): 5032. DOI: 10.1038/s41598-024-54910-3.
[31] MAKKONEN L. Models for the growth of rime, glaze, icicles and wet snow on structures[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2000, 358(1776): 2913-2939. DOI: 10.1098/rsta.2000.0690.
[32] RAHIMI E, RABIEE A, AGHAEI J, et al. On the management of wind power intermittency[J]. Renewable and Sustainable Energy Reviews, 2013, 28: 643-653. DOI: 10.1016/j.rser.2013.08.034.
[1] 魏梓书, 陈志刚, 王衍学, 哈斯铁尔·马德提汗. 基于SBSI-YOLO11的轻量化轴承外观缺陷检测算法[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 80-91.
[2] 黎宗孝, 张健, 罗鑫悦, 赵嶷飞, 卢飞. 基于K-means和Adam-LSTM的机场进场航迹预测研究[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 15-23.
[3] 石天怡, 南新元, 郭翔羽, 赵濮, 蔡鑫. 基于改进ConvNeXt的苹果叶片病害分类算法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 83-96.
[4] 苏春海, 夏海英. 抗噪声双约束网络的面部表情识别[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 70-82.
[5] 李欣, 宁静. 基于时空特征融合的电力系统暂态稳定评估[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 89-100.
[6] 侯海燕, 谭玉枚, 宋树祥, 夏海英. 头部姿态鲁棒的面部表情识别[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 126-137.
[7] 卢家辉, 陈庆锋, 王文广, 余谦, 何乃旭, 韩宗钊. 基于多尺度注意力的器官图像分割方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 138-148.
[8] 杜帅文, 靳婷. 基于用户行为特征的深度混合推荐算法[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 91-100.
[9] 易见兵, 彭鑫, 曹锋, 李俊, 谢唯嘉. 多尺度特征融合的点云配准算法研究[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 108-120.
[10] 肖宇庭, 吕晓琪, 谷宇, 刘传强. 基于拆分残差网络的糖尿病视网膜病变分类[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 91-101.
[11] 高飞, 郭晓斌, 袁冬芳, 曹富军. 改进PINNs方法求解边界层对流占优扩散方程[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 33-50.
[12] 蒋懿波, 刘会家, 吴田. 基于改进残差网络的输电线路雷击过电压识别研究[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 74-83.
[13] 唐侯清, 辛斌斌, 朱虹谕, 乙加伟, 张冬冬, 武新章, 双丰. 基于多尺度注意力倒残差网络的轴承故障诊断[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 109-122.
[14] 田晟, 张津铭, 李成伟, 李嘉. 基于BS_Bagging-cLightGBM模型的电动汽车故障预测方法[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 9-19.
[15] 杨烁祯, 张珑, 王建华, 张恒远. 声音事件检测综述[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 1-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘晓娟, 林璐, 胡郁葱, 潘雷. 站点周边用地类型对地铁乘车满意度影响研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 1 -12 .
[2] 陈建国, 梁恩华, 宋学伟, 覃章荣. 基于OCT图像三维重建的人眼房水动力学LBM模拟[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 29 -41 .
[3] 李好, 何冰. 凹槽结构表面液滴弹跳行为研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 42 -53 .
[4] 凌福, 张永刚, 闻炳海. 基于插值的多相流格子Boltzmann方法曲线边界算法研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 54 -68 .
[5] 解盛, 马海菲, 张灿龙, 王智文, 韦春荣. 基于多分辨率特征定位的跨模态行人检索方法[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 69 -79 .
[6] 魏梓书, 陈志刚, 王衍学, 哈斯铁尔·马德提汗. 基于SBSI-YOLO11的轻量化轴承外观缺陷检测算法[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 80 -91 .
[7] 易见兵, 胡雅怡, 曹锋, 李俊, 彭鑫, 陈鑫. 融合动态通道剪枝的轻量级CT图像肺结节检测网络设计[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 92 -106 .
[8] 卢梦筱, 张阳春, 章晓峰. 基于分布式强化学习方法解决后继特征中的低估问题[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 107 -119 .
[9] 姜云卢, 卢辉杰, 黄晓雯. 惩罚加权复合分位数回归方法在固定效应面板数据中的应用研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 120 -127 .
[10] 邓金娜, 刘秋梅, 陈一鸣, 杨爱民. 两种黏弹性运动板的数值模拟与稳定性分析[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 128 -139 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发