Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (1): 156-171.doi: 10.16088/j.issn.1001-6600.2025022805

• Ecology and Environmental Science Research • Previous Articles     Next Articles

Response Strategies of Microorganisms to Nutrient Limitations in Bulk and Aggregates of Limestone and Red Soils

LI Peiyun1,2,3, ZHANG Yuan3, CHEN Rongshu1,2,3, HU Xinyue3, XU Haiying3, LÜ Li3, LIANG Jianhong4,5, ZHU Jing1,2,3*   

  1. 1. Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), Guilin Guangxi 541006, China;
    2. Key Laboratory of Ecology and Environmental Protection of Rare and Endangered Animals and Plants, Ministry of Education (Guangxi Normal University), Guilin Guangxi 541006, China;
    3. College of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China;
    4. Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin Guangxi 541004, China;
    5. Ministry of Natural Resources, Guangxi Key Laboratory of Karst Dynamics (Institute of Karst Geology, Chinese Academy of Geological Sciences), Guilin Guangxi 541004, China
  • Received:2025-02-28 Revised:2025-05-01 Online:2026-01-05 Published:2026-01-26

Abstract: Soil nutrient supply imbalance leads to nutrient limitation for microorganisms; however, the microbial response strategies employed in different types of soils and aggregates towards it, as well as the impact on soil organic carbon (SOC), remain unclear. This study selected typical karst neutral calcareous soil (LS) and acidic red soil (RS) under secondary forest vegetation coverage in the subtropical monsoon region of China for comparative analysis. Nutrient limitation characteristics were evaluated using indicators such as the stoichiometric ratios of carbon (C), nitrogen (N), and phosphorus (P) in total amounts, bioavailable fractions, microbial biomass and extracellular enzymes as well as the chemical stoichiometric imbalances between microbes and resources in soil and aggregates. Additionally, the response strategies of different soil microbial communities to nutrient limitation and their impacts on SOC were analyzed. The results indicated that different indicators reflected various nutrient limitation characteristics. Notably, the stoichiometric ratios of bioavailable fractions and extracellular enzymes, along with the chemical stoichiometric imbalances determined the microbial response strategies. Overall, both soil types exhibited co-limitation of N and P, with RS experiencing a comparatively stronger limitation of both elements and stronger N and P limitations were observed in its macro-and medium-aggregates. Driven by soil dissolved organic carbon (DOC), the macro-and medium-aggregates microorganisms tended to enhance their N and P utilization efficiency (NUE and PUE) by increasing microbial phosphorus entropy (qMBP) and lowering the intracellular nutrient homeostasis to adapt to nutrient limitations, a process that resulted in reduced carbon utilization efficiency (CUE). To the contrary, LS kept a higher CUE. The SOC content was not influenced by the chemical stoichiometric imbalance or the microbial response strategies; instead, soil physicochemical properties, particularly pH and calcium content, emerged as key driving factors for SOC levels. The findings of this study provide a theoretical basis for the management and restoration of soil nutrients and carbon pools in subtropical forest ecosystems in China.

Key words: nutrient limitation, soil organic carbon, chemical stoichiometry, nutrient utilization efficiency, microbial entropy, aggregates, karst

CLC Number:  S154.36
[1] YANG Y, GUNINA A, CHENG H, et al. Unlocking mechanisms for soil organic matter accumulation: carbon use efficiency and microbialnecromass as the keys[J]. Global Change Biology, 2025, 31(1): e70033. DOI: 10.1111/gcb.70033.
[2] YUAN X B, NIU D C, GHERARDI L A, et al. Linkages of stoichiometric imbalances to soil microbial respiration with increasing nitrogen addition: evidence from a long-term grassland experiment[J]. Soil Biology and Biochemistry, 2019, 138: 107580. DOI: 10.1016/j.soilbio.2019.107580.
[3] LUO L, ZHU L Y, HONG W, et al. Microbial resource limitation and regulation of soil carbon cycle in Zoige Plateau peatland soils[J]. Catena, 2021, 205: 105478. DOI: 10.1016/j.catena.2021.105478.
[4] LIAO J J, DOU Y X, WANG B R, et al. Soil stoichiometric imbalances constrain microbial-driven C and N dynamics in grassland[J]. Science of the Total Environment, 2024, 924: 171655. DOI: 10.1016/j.scitotenv.2024.171655.
[5] LUO H Q, YU J L, LI R X, et al. Microbial biomass C∶N∶P as a better indicator than soil and ecoenzymatic C∶N∶P for microbial nutrient limitation and C dynamics in Zoige Plateau peatland soils[J]. International Biodeterioration & Biodegradation, 2022, 175: 105492. DOI: 10.1016/j.ibiod.2022.105492.
[6] CHEN H, LI D J, MAO Q G, et al. Resource limitation of soil microbes in karst ecosystems[J]. Science of the Total Environment, 2019, 650: 241-248. DOI: 10.1016/j.scitotenv.2018.09.036.
[7] CLEVELAND CC, LIPTZIN D. C∶N∶P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?[J]. Biogeochemistry, 2007, 85(3): 235-252. DOI: 10.1007/s10533-007-9132-0.
[8] SINSABAUGH R L, LAUBER C L, WEINTRAUB M N, et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters, 2008, 11(11): 1252-1264. DOI: 10.1111/j.1461-0248.2008.01245.x.
[9] MOOSHAMMER M, WANEK W, ZECHMEISTER-BOLTENSTERN S, et al. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources[J]. Frontiers in Microbiology, 2014, 5: 22. DOI: 10.3389/fmicb.2014.00022.
[10] 朱婧, 刘鼎, 王珊, 等. 土壤养分及其化学计量特征对微生物碳利用效率的影响机制[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 376-387. DOI: 10.16088/j.issn.1001-6600.2022022810.
[11] FANIN N, FROMIN N, BARANTAL S, et al. Stoichiometric plasticity of microbial communities is similar between litter and soil in a tropical rainforest[J]. Scientific Reports, 2017, 7: 12498. DOI: 10.1038/s41598-017-12609-8.
[12] LUO L, MENG H, GU J D. Microbial extracellular enzymes in biogeochemical cycling of ecosystems[J]. Journal of Environmental Management, 2017, 197: 539-549. DOI: 10.1016/j.jenvman.2017.04.023.
[13] BRADFORD M A, CROWTHER T W. Carbon use efficiency and storage in terrestrial ecosystems[J]. New Phytologist, 2013, 199(1): 7-9. DOI: 10.1111/nph.12334.
[14] MOOSHAMMER M, WANEK W,HÄMMERLE I, et al. Adjustment of microbial nitrogen use efficiency to carbon: nitrogen imbalances regulates soil nitrogen cycling[J]. Nature Communications, 2014, 5: 3694. DOI: 10.1038/ncomms4694.
[15] BAI X J, DIPPOLD M A, AN S S, et al. Extracellular enzyme activity and stoichiometry: the effect of soil microbial element limitation during leaf litter decomposition[J]. Ecological Indicators, 2021, 121: 107200. DOI: 10.1016/j.ecolind.2020.107200.
[16] SIX J, BOSSUYT H, DEGRYZE S, et al. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004, 79(1): 7-31. DOI: 10.1016/j.still.2004.03.008.
[17] LUAN H A, GAO W, TANG J W, et al. Aggregate-associated changes in nutrient properties, microbial community and functions in a greenhouse vegetable field based on an eight-year fertilization experiment of China[J]. Journal of Integrative Agriculture, 2020, 19(10): 2530-2548. DOI: 10.1016/S2095-3119(20)63269-5.
[18] YANG C, LIU N, ZHANG Y J. Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration[J].Geoderma, 2019, 337: 444-452. DOI: 10.1016/j.geoderma.2018.10.002.
[19] HAN S, LUO X S, HAO X L, et al. Microscale heterogeneity of the soil nitrogen cycling microbial functional structure and potential metabolism[J]. Environmental Microbiology, 2021, 23(2): 1199-1209. DOI: 10.1111/1462-2920.15348.
[20] SUN D Q, LIN Q, ANGST G, et al. Microbial communities in soil macro-aggregates with less connected networks respire less across successional and geographic gradients[J]. European Journal of Soil Biology, 2022, 108: 103378. DOI: 10.1016/j.ejsobi.2021.103378.
[21] 苏芝凤, 黄德周, 朱芷仪, 等. 亚热带森林不同土壤类型团聚体酶活性及化学计量特征的差异[J]. 环境科学, 2025, 46(3): 1716-1728. DOI: 10.13227/j.hjkx.202401042.
[22] SINSABAUGH R L, TURNER B L, TALBOT J M, et al. Stoichiometry of microbial carbon use efficiency in soils[J]. Ecological Monographs, 2016, 86(2): 172-189. DOI: 10.1890/15-2110.1.
[23] XU C H, XU X, JU C H, et al. Long-term, amplified responses of soil organic carbon to nitrogen addition worldwide[J]. Global Change Biology, 2021, 27(6): 1170-1180. DOI: 10.1111/gcb.15489.
[24] MALIK A A, MARTINY J B H, BRODIE E L, et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change[J]. The ISME Journal, 2020, 14(1): 1-9. DOI: 10.1038/s41396-019-0510-0.
[25] FANG X M, ZHANG X L, CHEN F S, et al. Phosphorus addition alters the response of soil organic carbon decomposition to nitrogen deposition in a subtropical forest[J]. Soil Biology and Biochemistry, 2019, 133: 119-128. DOI: 10.1016/j.soilbio.2019.03.005.
[26] WANG Y, ZHANG L M, CHEN J, et al. Functional diversity of plant communities in relationship to leaf and soil stoichiometry in karst areas of southwest China[J]. Forests, 2022, 13(6): 864. DOI: 10.3390/f13060864.
[27] CHEN H, LI D J, XIAO K C, et al. Soil microbial processes and resource limitation in karst and non-karst forests[J]. Functional Ecology, 2018, 32(5): 1400-1409. DOI: 10.1111/1365-2435.13069.
[28] JIANG Y J, SUN B, LI H X, et al. Aggregate-related changes in network patterns of nematodes and ammonia oxidizers in an acidic soil[J]. Soil Biology and Biochemistry, 2015, 88: 101-109. DOI: 10.1016/j.soilbio.2015.05.013.
[29] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
[30] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科学技术出版社, 2000.
[31] BROOKES P C, LANDMAN A, PRUDEN G, et al. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil[J]. Soil Biology and Biochemistry, 1985, 17(6): 837-842. DOI: 10.1016/0038-0717(85)90144-0.
[32] VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 1987, 19(6): 703-707. DOI: 10.1016/0038-0717(87)90052-6.
[33] SAIYA-CORK K R, SINSABAUGH R L, ZAK D R. The effects oflong term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil[J]. Soil Biology and Biochemistry, 2002, 34(9): 1309-1315. DOI: 10.1016/S0038-0717(02)00074-3.
[34] ZHONG Z K, LI W J, LU X Q, et al. Adaptive pathways of soil microorganisms to stoichiometric imbalances regulate microbial respiration following afforestation in the Loess Plateau, China[J]. Soil Biology and Biochemistry, 2020, 151: 108048. DOI: 10.1016/j.soilbio.2020.108048.
[35] LI B, LI Y B, FANIN N, et al. Stoichiometric imbalances between soil microorganisms and their resources regulate litter decomposition[J]. Functional Ecology, 2023, 37(12): 3136-3149. DOI: 10.1111/1365-2435.14459.
[36] XU M P, LI W J, WANG J Y, et al. Soilecoenzymatic stoichiometry reveals microbial phosphorus limitation after vegetation restoration on the Loess Plateau, China[J]. Science of the Total Environment, 2022, 815: 152918. DOI: 10.1016/j.scitotenv.2022.152918.
[37] LI J W, LIU Y L, HAI X Y, et al. Dynamics of soil microbial C∶N∶P stoichiometry and its driving mechanisms following natural vegetation restoration after farmland abandonment[J]. Science of the Total Environment, 2019, 693: 133613. DOI: 10.1016/j.scitotenv.2019.133613.
[38] LIU C H, WANG B R, ZHU Y Z, et al. Eco-enzymatic stoichiometry and microbial non-homeostatic regulation depend on relative resource availability during litter decomposition[J]. Ecological Indicators, 2022, 145: 109729. DOI: 10.1016/j.ecolind.2022.109729.
[39] MOORHEAD D L, RINKES Z L, SINSABAUGH R L, et al. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models[J]. Frontiers in Microbiology, 2013, 4: 223. DOI: 10.3389/fmicb.2013.00223.
[40] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937-3947. DOI: 10.3321/j.issn:1000-0933.2008.08.054.
[41] 刘佩雯, 覃云斌, 莫慧婷, 等. 凋落物及根系输入变化对喀斯特地区檵木土壤养分和胞外酶的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 179-191. DOI: 10.16088/j.issn.1001-6600.2023031303.
[42] 刘宁, 刘佩雯, 何浩勇, 等. 凋落物对喀斯特檵木土壤微生物生物量和土壤酶活性的影响[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 161-173. DOI: 10.16088/j.issn.1001-6600.2024080202.
[43] MORI T, AOYAGI R, KITAYAMA K, et al. Does the ratio of β-1,4-glucosidase to β-1,4-N-acetylglucosaminidase indicate the relative resource allocation of soil microbes to C and N acquisition?[J]. Soil Biology and Biochemistry, 2021, 160: 108363. DOI: 10.1016/j.soilbio.2021.108363.
[44] ROSINGER C, ROUSK J, SANDÉN H. Can enzymatic stoichiometry be used to determine growth-limiting nutrients for microorganisms? A critical assessment in two subtropical soils[J]. Soil Biology and Biochemistry, 2019, 128: 115-126. DOI: 10.1016/j.soilbio.2018.10.011.
[45] WANG J P, WU Y H, LI J J, et al. Soil enzyme stoichiometry is tightly linked to microbial community composition in successional ecosystems after glacier retreat[J]. Soil Biology and Biochemistry, 2021, 162: 108429. DOI: 10.1016/j.soilbio.2021.108429.
[46] LI T P, WANG R Z, CAI J P, et al. Enhanced carbon acquisition and use efficiency alleviate microbial carbon relative to nitrogen limitation under soil acidification[J]. Ecological Processes, 2021, 10(1): 32. DOI: 10.1186/s13717-021-00309-1.
[47] 程琪, 毛霞丽, 孙涛, 等. 长期化肥与不同有机物料配施对土壤微生物生态化学计量特征和群落结构的影响[J]. 植物营养与肥料学报, 2024, 30(2): 209-220. DOI: 10.11674/zwyf.2023398.
[48] 任娇娇, 周运超, 刘兵, 等. 石灰岩发育土壤团聚体形成机制研究[J]. 中国岩溶, 2019, 38(5): 722-728. DOI: 10.11932/karst2019y17.
[49] FENG M, XIANG J, JI X F, et al.Larger soil water-stable aggregate may exert a negative effect on nutrient availability: results from red soil (ultisol), in South China[J]. Forests, 2023, 14(5): 975. DOI: 10.3390/f14050975.
[50] XIAO D, TANG Y X, ZHANG W, et al. Lithology and niche habitat have significant effect on arbuscular mycorrhizal fungal abundance and their interspecific interactions[J]. Science of the Total Environment, 2024, 919: 170774. DOI: 10.1016/j.scitotenv.2024.170774.
[51] 彭素琴, 刘郁林, 毛瑢, 等. 马尾松补植木荷对土壤微生物生物量碳氮的动态影响[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 150-160. DOI: 10.16088/j.issn.1001-6600.2024062801.
[52] 陶冬雪, 高英志. 土壤解磷微生物促进植物磷素吸收策略研究进展[J]. 生态学报, 2023, 43(11): 4390-4399. DOI: 10.5846/stxb202111193253.
[53] MANZONI S, DING Y, WARREN C, et al. Intracellular storage reduces stoichiometric imbalances in soil microbial biomass:a theoretical exploration[J]. Frontiers in Ecology and Evolution, 2021, 9: 714134. DOI: 10.3389/fevo.2021.714134.
[54] ZHANG L H, JIA L Z, HE L Y, et al. Homeostatic evidence of management-induced phosphorus decoupling from soil microbial carbon and nitrogen metabolism[J]. Journal of Plant Ecology, 2023, 16(6): rtad035. DOI: 10.1093/jpe/rtad035.
[55] ZHANG Z H, GONG J R, SONG L Y, et al. Adaptations of soil microbes to stoichiometric imbalances in regulating their carbon use efficiency under a range of different grazing intensities[J]. Applied Soil Ecology, 2024, 193: 105141. DOI: 10.1016/j.apsoil.2023.105141.
[56] LIANG C, ZHU X F. The soilMicrobial Carbon Pump as a new concept for terrestrial carbon sequestration[J]. Science China Earth Sciences, 2021, 64(4): 545-558. DOI: 10.1007/s11430-020-9705-9.
[57] TAO F, HUANG Y Y, HUNGATE B A, et al. Microbial carbon use efficiency promotes global soil carbon storage[J]. Nature, 2023, 618(7967): 981-985. DOI: 10.1038/s41586-023-06042-3.
[58] HE X J, ABRAMOFF R Z, ABS E, et al. Model uncertainty obscures major driver of soil carbon[J]. Nature, 2024, 627(8002): E1-E3. DOI: 10.1038/s41586-023-06999-1.
[59] XIAO K Q, LIANG C, WANG Z M, et al. Beyond microbial carbon use efficiency[J]. National Science Review, 2024, 11(4): nwae059. DOI: 10.1093/nsr/nwae059.
[60] WANG X X, CUI Y X, WANG Y H, et al. Ecoenzymatic stoichiometry reveals phosphorus addition alleviates microbial nutrient limitation and promotes soil carbon sequestration in agricultural ecosystems[J]. Journal of Soils and Sediments, 2022, 22(2): 536-546. DOI: 10.1007/s11368-021-03094-8.
[61] MAO X L, VAN ZWIETEN L, ZHANG M K, et al. Soil parent material controls organic matter stocks and retention patterns in subtropical China[J]. Journal of Soils and Sediments, 2020, 20(5): 2426-2438. DOI: 10.1007/s11368-020-02578-3.
[1] HE Wenmin, LIU Xuanyuan, ZHOU Qihai, ZHANG Mingxia. Optimizing Accuracy of Random Forest Interpretation Based on Terrain Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 227-236.
[2] TANG Li, LI Mengxia, HUANG Huixin, PAN Xinru, JIANG Xuefang, YANG Shujun, PAN Yu, QIN Yunbin. Effects of Karst Vegetation Restoration on GRSP in Northern Guangxi [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 9-19.
[3] DING Suya, MA Jiangming, QIN Yunbin, HUANG Fangling, SONG Lili, LIU Wenqing, LI Mengxia, HE Xinnuo. Effects of Biochar on Soil Organic Carbon Composition and Carbon Pool Management Index of Moso Bamboo Forests [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 180-190.
[4] YANG Pan, HUANG Ying, CEN Lijie, HUANG Li, WANG Haimiao. Distribution of C, N, P, K and Its Ecological Stoichiometry Characteristics in Alchornea trewioides [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 169-178.
[5] LIU Peiwen, QIN Yunbin, MO Huiting, ZHOU Zhenhui, MENG Weiming, HUANG Qixiang, MA Jiangming. Effects of Litter and Root Input and Removal on Soil Nutrient, Enzyme Activity, and Stoichiometry in Karst of Loropetalum chinense [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 179-191.
[6] LIU Xuanyuan, GUAN Chaoyi, ZHANG Mingxia, ZHOU Qihai. Mitigation of Reserve on Karst Forest Landscape Fragmentation by Cropland Expansion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 202-210.
[7] WANG Junguang, WANG Peng, ZHAO Zhizhong, TANG Wei, ZHAO Zeyang, LI Yan. Effects of Land Use Types on Soil Organic Carbon Content in Eastern Hainan Island [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 171-179.
[8] HE Fangyuang, SU Quan, CHEN Kunquan, CHEN Shandong, JIANG Yong, LUO Ming, LIANG Shichu. Exploring Community Assembly of Guilin Karst Hills Based on Functional Traits and Phylogeny [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 171-181.
[9] ZHU Jing, LIU Ding, WANG Shan, HUANG Zuoshui, LIANG Jianhong. Impacts of Soil Nutrients and Stoichiometry on Microbial Carbon Use Efficiency [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 376-387.
[10] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22-34.
[11] TANG Chuangbin, DONG Peipei, HUANG Qiuchan, TAN Weining, ZHOU Qihai, WANG Guohai. Comparison of Seed Removal Behavior of Rodents to Kmeria septentrionalis and Cyclobalanopsis glauca in the Karst Habitat [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 199-204.
[12] MO Yanhua, ZOU Han, MA Jiangming, LI Yufeng, JIAN Rui, QIN Jiashuang, SONG Zunrong, LIN Zhengzhong. Variation of Soil Temperature and Moistureat Different Successional Stages of Loropetalum chinense Communities in Karst Hills of Guilin, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 122-130.
[13] ZHU Bailu, YANG Qiyong, XIE Yunqiu, DENG Yan, TANG Meirong, LIU Dacun, ZENG Hongchun. Spatial Distribution and Driving Factors of Karst Rocky Desertification in Lijiang River Basin [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 139-150.
[14] LI Youbang, NONG Juanli, YANG Wanlin, ZHAO Jiajia, ZHU Qiqi. Daily Activity Patterns of Two Sympatric Squirrels Callosciurus erythraeus and Dremomys rufigenis in Nonggang, Guangxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 71-78.
[15] YOU Jing, QI Yueming, SHAO Guangyu, MA Chao, YANG Yaqi, PEI Yifeng. Hydrochemical Characteristics and Main Ion Sourcesof Shallow Groundwater in Zihe River Source Region, Shandong, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 132-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiaojuan, LIN Lu, HU Yucong, PAN Lei. Research on the Influence of Land Use Types Surrounding Stations on Subway Passenger Satisfaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 1 -12 .
[2] HAN Huabin, GAO Bingpeng, CAI Xin, SUN Kai. Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 13 -28 .
[3] CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29 -41 .
[4] LI Hao, HE Bing. Droplet Rebound Behavior on Grooves Surface[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 42 -53 .
[5] TIAN Sheng, ZHAO Kailong, MIAO Jialin. Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 1 -9 .
[6] HUANG Yanguo, XIAO Jie, WU Shuiqing. Bidirectional Efficient Multi-scale Traffic Flow Prediction Based on D2STGNN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 10 -22 .
[7] LIU Zhihao, LI Zili, SU Min. YOLOv8-based Helmet Detection Method for Electric Vehicle Riders Combining Intelligent Communication and UAV-Assistance[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 23 -32 .
[8] ZHANG Zhulu, LI Huaqiang, LIU Yang, XU Lixiong. Non-intrusive Load Identification Based on Bi-LSTM Feature Fusion and FT-FSL[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 33 -44 .
[9] WANG Tao, LI Yuansong, SHI Rui, CHEN Huining, HOU Xianqing. MGDE-UNet: Defect Segmentation Model for Lightweight Photovoltaic Cells[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 45 -55 .
[10] HUANG Wenjie, LUO Weiping, CHEN Zhennan, PENG Zhixiang, DING Zihao. Research on Lightweight PCB Defect Detection Algorithm Based on YOLO11[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 56 -67 .