Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (2): 145-163.doi: 10.16088/j.issn.1001-6600.2025040101

• Intelligence Information Processing • Previous Articles     Next Articles

Particle Swarm Optimization Algorithm with Density PeakClustering Decision Values

ZHAO Chenying1, YUAN Shujuan1*, KONG Shanshan1, YANG Aimin1,2,3,4,5, WEI Jiamei1   

  1. 1. College of Science, North China University of Science and Technology, Tangshan Hebei 063210, China;
    2. Hebei Engineering Research Center for the Intelligentization of Iron Ore Optimization and Ironmaking Raw Mate rialsPreparation Processes (North China University of Science and Technology), Tangshan Hebei 063210, China;
    3. Hebei Key Laboratory of Data Science and Application (North China University of Science and Technology), Tangshan Hebei 063210, China;
    4. The Key Laboratory of Engineering Computing in Tangshan City (North China Universityof Science and Technology), Tangshan Hebei 063210, China;
    5. Tangshan Intelligent Industry and Image ProcessingTechnology Innovation Center (North China University of Science and Technology), Tangshan Hebei 063210, China
  • Received:2025-04-01 Revised:2025-07-05 Published:2026-02-03

Abstract: Particle swarm optimization (PSO) algorithm, as a classical algorithm of swarm intelligence optimization, has been widely used in practice. However, in the face of different problems, it cannot make real-time adjustments according to the group status, and lacks certain flexibility, therefore, a particle swarm optimization algorithm (DVPSO) based on fusion density peak decision is proposed. For initialization, design the binary mapping of elite point set in order to improve the distribution quality of different types of particles. For velocity update, an information exchange mechanism based on density peak is constructed to balance the particle search tendency. For position updating, a dynamic two-neighborhood search strategy of step size search operator is proposed, which combines population state and optimization range changes to regulate particle movement and give consideration to search flexibility. 12 test functions were compared with PSO and 5 new swarm intelligent optimization algorithms, and 2 engineering problems were compared with 5 new intelligent algorithms. The results show that the DVPSO algorithm has better search accuracy and stability, which verifies the adaptability and good performance of the algorithm.

Key words: particle swarm optimization algorithm, peak density, elite point set, information interaction, dynamic neighborhood search

CLC Number:  TP301.6;TP391;TP18
[1] KENNEDY J, EBERHART R.Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks.Piscataway, NJ:IEEE, 1995:1942-1948.DOI:10.1109/ICNN.1995.488968.
[2] XUE J K, SHEN B.A novel swarm intelligence optimization approach:sparrow search algorithm[J].Systems Science & Control Engineering, 2020, 8(1):22-34.DOI:10.1080/21642583.2019.1708830.
[3] HEIDARI A A, MIRJALILI S, FARIS H, et al.Harris hawks optimization:algorithm and applications[J].Future Generation Computer Systems, 2019, 97:849-872.DOI:10.1016/j.future.2019.02.028.
[4] TROJOVSKÝ P, DEHGHANI M.Pelican optimization algorithm:a novel nature-inspired algorithm for engineering applications[J].Sensors, 2022,22(3):855.DOI:10.3390/s22030855.
[5] LIU Q X, DU S Z, VAN WYK B J, et al.Niching particle swarm optimization based on Euclidean distance and hierarchical clustering for multimodal optimization[J].Nonlinear Dynamics, 2020, 99(3):2459-2477.DOI:10.1007/s11071-019-05414-7.
[6] FREITAS D, LOPES L G, MORGADO-DIAS F.Particle swarm optimisation:a historical review up to the current developments[J].Entropy, 2020, 22(3):362.DOI:10.3390/e22030362.
[7] 商立群, 闵鹏波, 张建涛.基于改进PSO算法的光伏阵列MPPT研究[J].传感器与微系统, 2024, 43(8):35-39.DOI:10.13873/J.1000-9787(2024)08-0035-05.
[8] 朱茂桃, 刘欢, 吴佘胤, 等.混合策略改进的粒子群算法[J].重庆理工大学学报(自然科学), 2024, 38(1):110-121.DOI:10.3969/j.issn.1674-8425(z).2024.01.013.
[9] 蒋凌云, 魏庆来, 张峰华, 等.基于改进粒子群优化算法的PID控制器参数整定[J].控制工程, 2024, 31(3):470-477.DOI:10.14107/j.cnki.kzgc.20210776.
[10] WATANABE K, XU X S.Nonlinear crossing strategy-based particle swarm optimizations with time-varying acceleration coefficients[J].Applied Intelligence, 2024, 54(13):7229-7277.DOI:10.1007/s10489-024-05502-1.
[11] LONG X, CAI W W, YANG L P, et al.Improved particle swarm optimization with reverse learning and neighbor adjustment for space surveillance network task scheduling[J].Swarm and Evolutionary Computation, 2024, 85:101482.DOI:10.1016/j.swevo.2024.101482.
[12] XU H R, DENG Q W, ZHANG Z Y, et al.A hybrid differential evolution particle swarm optimization algorithm based on dynamic strategies[J].Scientific Reports, 2025, 15(1):4518.DOI:10.1038/s41598-024-82648-5.
[13] 张振翮, 杨蹈宇, 舒奕彬, 等.改进粒子群优化算法在搬运机器人机械臂中的应用[J].机械传动, 2024, 48(8):49-56.DOI:10.16578/j.issn.1004.2539.2024.08.007.
[14] 郑力宁, 金雪松, 云利军.基于粒子群优化算法的云数据均衡放置策略[J].广西师范大学学报(自然科学版), 2022, 40(3):202-209.DOI:10.16088/j.issn.1001-6600.2021071502.
[15] RODRIGUEZ A, LAIO A.Clustering by fast search and find of density peaks[J].Science, 2014, 344(6191):1492-1496.DOI:10.1126/science.1242072.
[16] 陈梅, 尤远毓秀, 魏礼磊, 等.基于低密度分数的密度峰值聚类算法[J].控制与决策, 2025, 40(5):1599-1609.DOI:10.13195/j.kzyjc.2024.0963.
[17] 华罗庚, 王元, 数论在近似分析中的应用[M].北京:科学出版社, 1978:1-99.
[18] 陶新民, 郭文杰, 李向可, 等.基于密度峰值的依维度重置多种群粒子群算法[J].软件学报, 2023, 34(4):1850-1869.DOI:10.13328/j.cnki.jos.006432.
[19] YU F, GUAN J, WU H R, et al.Lens imaging opposition-based learning for differential evolution with cauchy perturbation[J].Applied Soft Computing, 2024, 152:111211.DOI:10.1016/j.asoc.2023.111211.
[20] 李飞, 乐强, 潘紫微, 等.基于自动快速密度峰值聚类的粒子群动态优化算法[J].计算机应用, 2023, 43(S1):154-162.DOI:10.11772/j.issn.1001-9081.2022060815.
[21] 刘禹彤, 任自艳, 迟连强, 等.基于自适应模型降阶的三维非线性磁场快速计算方法[J].电工技术学报, 2025, 40(1):1-12.DOI:10.19595/j.cnki.1000-6753.tces.232159.
[22] YAO X, LIU Y, LIN G M.Evolutionary programming made faster[J].IEEE Transactions on Evolutionary Computation, 1999, 3(2):82-102.DOI:10.1109/4235.771163.
[23] Institute of Mathematical Statistics, HARTER H L, OWEN D B.Selected tables in mathematical statistics[M].Providence, RI:American Mathematical Society, 1970:171-259.
[24] 唐天兵, 李继发, 严毅.多策略改进的猎人猎物优化算法及其应用[J].广西师范大学学报(自然科学版), 2024, 42(4):153-164.DOI:10.16088/j.issn.1001-6600.2023100902.
[25] AMIRI M H, MEHRABI HASHJIN N, MONTAZERI M, et al.Hippopotamus optimization algorithm:a novel nature-inspired optimization algorithm[J].Scientific Reports, 2024, 14:5032.DOI:10.1038/s41598-024-54910-3.
[26] WANG J, WANG W C, HU X X, et al.Black-winged kite algorithm:a nature-inspired meta-heuristic for solving benchmark functions and engineering problems[J].Artificial Intelligence Review, 2024, 57(4):98.DOI:10.1007/s10462-024-10723-4.
[27] AGUSHAKAJ O, EZUGWU A E, SAHA A K, et al.Greater cane rat algorithm (GCRA):a nature-inspired metaheuristic for optimization problems[J].Heliyon, 2024, 10(11):e31629.DOI:10.1016/j.heliyon.2024.e31629.
[28] LIAN J B, HUI G H, MA L, et al.Parrot optimizer:algorithm and applications to medical problems[J].Computers in Biology and Medicine, 2024, 172:108064.DOI:10.1016/j.compbiomed.2024.108064.
[29] OUYANG K C, FU S W, CHEN Y, et al.Escape:an optimization method based on crowd evacuation behaviors[J].Artificial Intelligence Review, 2025, 58(1):19.DOI:10.1007/s10462-024-11008-6.
[1] DU Xiaoxin, NIU Liming, WANG Bo, WANG Yiping, LI Changrong, WANG Zhenfei. Dung Beetle Optimization Algorithm Based on Neighborhood Search Strategy and Application [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 149-167.
[2] TANG Tianbing, LI Jifa, YAN Yi. Multi-strategy Improved of Hunter-Prey Optimization Algorithm and Its Application [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 153-164.
[3] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55-67.
[4] XU Lunhui,HUANG Baoshan,ZHONG Haixing. Time Window Model and Algorithm with AGV System Path Planning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 1-8.
[5] SHI Ya-bing, HUANG Yu, QIN Xiao, YUAN Chang-an. K-Means Clustering Algorithm Based on a Novel Approach for Improved Initial Seeds [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 33-40.
[6] CAO Yong-chun, SHAO Ya-bin, TIAN Shuang-liang, CAI Zheng-qi. A Clustering Method Based on Immune Genetic Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 59-64.
[7] ZHANG Chao-qun, ZHENG Jian-guo, LI Tao-shen. Effect of Scout Bees on the Performance of Artificial Bee Colony Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 72-80.
[8] ZHOU Yan-cong, GU Jun-hua, DONG Yong-feng. Converse Binary Anti-collision Algorithm and Hardware Implementation Based on FPGA [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 94-99.
[9] HUANG Min, JIN Ting, ZHONG Sheng, MA Yu-chun. Ant Colony Algorithm for Solving Continuous Function Optimization Problem Based on Pheromone Distributive Function [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 34-38.
[10] CUI Yao-dong, ZHOU Mi, YANG Liu. Strategies for Solving the 1D Cutting Stock Problem of Multiple Stock Lengths [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 149-153.
[11] MA Ning, YU Hong-zhi. Image Watermarking Algorithm Based on DCT Transform and ArnoldTransform [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 163-167.
[12] ZHU Dai-hui, CHEN Guang-peng, YANG Yu-bin. Research and Application of Experience-based Classification Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 109-112.
[13] WANG Yan, YUAN Chang-an, LIU Fu-tian. Constructing Decision Tree Attribution Reduction Algorithms withGene Expression Programming Based on Information Gain [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 113-117.
[14] LIU Tao, LI Xiang-jun, QIU Tao-rong, GONG Ke-hua, GUO Chuan-jun. An Approach to Computing Similarity Degree Between Chinese Articles Based on Tolerance Granular Computing Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 135-139.
[15] FU Tiao-ping, CHEN Jian-hua, LI Gang-qiang. Warship Air Defense WTA Based on Dynamic Adaptive GA [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 187-190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TIAN Sheng, ZHAO Kailong, MIAO Jialin. Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 1 -9 .
[2] XU Xiuhong, ZHANG Jinyan, LU Yuling, LIANG Xiaoping, LIAO Guangfeng, LU Rumei. Research Progress of New C21 Steroids in Medicinal Plants of Asclepiadaceae(Ⅱ)[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 1 -16 .
[3] WANG Xingyu, ZHENG Haonan, LIU Xiao, CUI Shilong, CAI Jinjun. Research Progress on Preparation of Chitosan-based Adsorbents andTheir Applications Towards Adsorptive Removal of Pollutants From Water[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 17 -30 .
[4] TIAN Sheng, FENG Shuaitao, LI Jia. A Framework for Enhanced Vehicle Trajectory Extraction in Urban Road Scenes[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 31 -51 .
[5] LÜ Hui, SI Ke. Photovoltaic Panel Defect Detection Based on Improved RT-DETR[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 52 -64 .
[6] SONG Guanwu, LI Jianjun. Semantic Segmentation of Remote Sensing Images Basedon Self-distillation Edge Refinement[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 65 -76 .
[7] WANG Xuyang, LIANG Yuhang. Multi-scale Asymmetric Attention Transformer for Remote Sensing Image Dehazing[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 77 -89 .
[8] ZHANG Shengwei, CAO Jie. Detection Algorithm of Tiny Defects on Steel Surface Based onFourier Convolution and Difference Perception[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 90 -102 .
[9] WANG Wei, LI Zhiwei, ZHANG Zhaoyang, ZHANG Hong, ZHOU Li, WANG Zhen, HUANG Fang, WANG Can. Carbon Emission Prediction of Substation Based on IFA-BP Neural Network Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 103 -114 .
[10] LUO Yuan, ZHU Wenzhong, WANG Wen, WU Yuhao. A Multi-step Water Quality Prediction Model Based on Improved PatchTST[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(2): 115 -131 .