Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (2): 149-167.doi: 10.16088/j.issn.1001-6600.2024040902

• Intelligence Information Processing • Previous Articles     Next Articles

Dung Beetle Optimization Algorithm Based on Neighborhood Search Strategy and Application

DU Xiaoxin1,2*, NIU Liming1, WANG Bo1,2, WANG Yiping1,2, LI Changrong1,2, WANG Zhenfei1   

  1. 1. College of Computer and Control Engineering, Qiqihar University, Qiqihar Heilongjiang 161006, China;
    2. Heilongjiang Key Laboratory of Big Data Network Security Detection and Analysis (Qiqihar University), Qiqihar Heilongjiang 161006, China
  • Received:2024-04-09 Revised:2024-06-26 Online:2025-03-05 Published:2025-04-02

Abstract: Taking inspiration from the leader follower strategy, a dung beetle optimization algorithm based on neighborhood search strategy is proposed to address the problems of slow convergence speed, easy falling into local optima, and weak global exploration ability in the optimization algorithm. Firstly, introducing Singer mapping to initialize the population improves the quality of initial solutions and enhances the convergence speed of the algorithm; Secondly, a neighborhood search strategy is proposed to enhance population diversity, break away from local convergence, and improve the local development ability of the algorithm; Finally, an elite pool perturbation strategy is designed to expand the search range, enhance the algorithm’s global exploration and local optimization capabilities, and improve the algorithm’s solving efficiency and accuracy. In order to verify the effectiveness of the proposed algorithm, a series of experiments are designed in this paper to verify its performance. The results indicate that the algorithm has significantly improved optimization accuracy and convergence speed. The algorithm is applied to the three-dimensional path planning problem of unmanned aerial vehicles, and the experimental results show that the algorithm demonstrates effectiveness and efficiency in dealing with practical application problems.

Key words: dung beetle optimization algorithm, path planning, singer mapping, neighborhood search strategy, elite pool-disturbance strategy

CLC Number:  TP301.6
[1] XUE J K, SHEN B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336. DOI: 10.1007/s11227-022-04959-6.
[2] 刘艺梦, 丁小明, 王会强, 等. 基于蜣螂算法优化BP的冬夏生菜根区温度预测模型[J]. 农业工程学报, 2024, 40(5): 231-238. DOI: 10.11975/j.issn.1002-6819.202312071.
[3] 李宇, 刘玲, 薛铸. 基于群智能算法的土壤水分特征曲线模型参数优化[J]. 节水灌溉, 2023(12): 57-65. DOI: 10.12396/jsgg.2023208.
[4] 易望远, 尹瑞雪, 田应权, 等. 数控铣削能耗预测及切削参数多目标优化研究[J]. 重庆理工大学学报(自然科学), 2024, 38(3): 240-249. DOI: 10.3969/j.issn.1674-8425(z).2024.03.026.
[5] 夏焰坤, 黄鹏, 任俊杰, 等. 改进蜣螂算法优化混合核极限学习机的系统谐波阻抗估计[J]. 电力系统及其自动化学报, 2024, 36(11): 69-78. DOI: 10.19635/j.cnki.csu-epsa.001431.
[6] 游志平, 马宏, 梁群, 等. 基于IDBO-KELM的汽车零部件激光熔覆几何形貌预测建模方法研究[J]. 应用激光, 2024, 44(3): 51-62. DOI: 10.14128/j.cnki.al.20244403.051.
[7] JIANG H, DENG J H, CHEN Q S. Olfactory sensor combined with chemometrics analysis to determine fatty acid in stored wheat [J]. Food Control,2023, 153: 109942. DOI: 10.1016/j.foodcont.2023.109942.
[8] 何凯, 廖玉松, 张小光. 基于NGO-VMD和DBO-SVM的滚动轴承早期故障诊断[J]. 西安航空学院学报, 2024, 42(1): 41-47. DOI: 10.20096/j.xhxb.1008-9233.2024.01.008.
[9] 赵鑫, 王东丽, 彭泓, 等. 基于多策略改进蜣螂算法优化的变压器故障诊断[J]. 电力系统保护与控制, 2024, 52(6): 120-130. DOI: 10.19783/j.cnki.pspc.230783.
[10] WANG Z D, HUANG LL, YANG S X, et al. A quasi-oppositional learning of updating quantum state and Q-learning based on the dung beetle algorithm for global optimization[J]. Alexandria Engineering Journal, 2023, 81: 469-488. DOI: 10.1016/j.aej.2023.09.042.
[11] 潘劲成, 李少波, 周鹏, 等. 改进正弦算法引导的蜣螂优化算法[J]. 计算机工程与应用, 2023, 59(22): 92-110. DOI: 10.3778/j.issn.1002-8331.2305-0021.
[12] 隋东, 杨振宇, 丁松滨, 等. 基于EMSDBO算法的无人机三维航迹规划[J]. 系统工程与电子技术, 2024, 46(5): 1756-1766. DOI: 10.12305/j.issn.1001-506X.2024.05.28.
[13] ZHANG R Z, ZHU Y J, LIU Z S, et al. Aback propagation neural network model for postharvest blueberry shelf-life prediction based on feature selection and dung beetle optimizer[J]. Agriculture, 2023, 13(9): 1784. DOI: 10.3390/agriculture13091784.
[14] WANG C, WANG Z D, HAN Q L, et al. Novel leader-follower-based particle swarm optimizer inspired by multiagent systems: algorithm, experiments, and applications[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(3): 1322-1334. DOI: 10.1109/TSMC.2022.3196853.
[15] XUE J K,SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science and Control Engineering, 2020, 8(1): 22-34. DOI: 10.1080/21642583.2019.1708830.
[16] MIRJALILI S. SCA: a Sine Cosine Algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133. DOI: 10.1016/j.knosys.2015.12.022.
[17] KENNEDY J, EBERHART R. Particle swarm optimization[C] // Proceedings of ICNN’95: International Conference on Neural Networks. Piscataway, CA: IEEE, 1995: 1942-1948. DOI: 10.1109/ICNN.1995.488968.
[18] MIRJALILI S, MIRJALILI S M, LEWIS A. Greywolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. DOI: 10.1016/j.advengsoft.2013.12.007.
[19] ZHANG H, LIU Y L, CHAO H. Density peak clustering based on improved dung beetle optimization andmahalanobis metric[J]. Journal of Intelligent & Fuzzy Systems, 2023, 45(4): 6179-6191. DOI: 10.3233/JIFS-232334.
[20] JIN H W, JI H T, YAN F Z. Aneffective obstacle avoidance and motion planning design for underwater telescopic arm robots based on a tent chaotic dung beetle algorithm[J]. Electronics, 2023, 12(19): 4128. DOI: 10.3390/electronics 12194128.
[21] HE D Q, LIU C Y, JIN ZZ, et al. Fault diagnosis of flywheel bearing based on parameter optimization variational mode decomposition energy entropy and deep learning[J]. Energy, 2022, 239(Part B): 122108. DOI: 10.1016/j.energy.2021.122108.
[22] 陈刚, 林东, 陈飞, 等. 基于Logistic回归麻雀算法的图像分割[J]. 北京航空航天大学学报, 2023, 49(3): 636-646. DOI: 10.13700/j.bh.1001-5965.2021.0268.
[1] ZHENG Xiubin, CHEN Jun. Parameters Identification of Photovoltaic Cells Based on Improved Dung Beetle Optimization Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 51-63.
[2] TANG Tianbing, LI Jifa, YAN Yi. Multi-strategy Improved of Hunter-Prey Optimization Algorithm and Its Application [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 153-164.
[3] XU Lunhui, LIN Shicheng. Research on Full Coverage Path Planning Algorithm of Sweeping Robot Based on Divide and Conquer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 54-62.
[4] HU Juntao, SHI Xiaohu, MA Deyin. Nursing Workers Scheduling Based on Mean Shift and Genetic Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 27-39.
[5] YANG Jun-yao, MENG Zu-qiang. Path Planning Based on Time-dependent Logistics Networks Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 152-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!