Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (3): 27-39.doi: 10.16088/j.issn.1001-6600.2020061703

Previous Articles     Next Articles

Nursing Workers Scheduling Based on Mean Shift and Genetic Algorithm

HU Juntao1, SHI Xiaohu2, MA Deyin1,3*   

  1. 1. School of Computer Science and Engineering, Changchun University of Technology, Changchun Jilin 130012, China;
    2. College of Computer Science and Technology, Jilin University, Changchun Jilin 130012, China;
    3. Business School, Jilin University, Changchun Jilin 130012, China
  • Received:2020-06-17 Revised:2020-10-23 Published:2021-05-13

Abstract: With the intensification of China’s aging population, home health care services have been required increasingly. In some large communities, due to the huge demand for home health care services, the scheduling of nursing workers has been regarded as something more important. However, this issue is only addressed in a few studies based on the premise of the known number of nursing workers, through which a reference for the service center to recruit the number of nursing workers of different levels cannot be provided. A caregiver scheduling algorithm, which is based on mean shift clustering and genetic algorithm, is proposed in this paper. And reasonable allocation of caregivers is made under the condition of completing all the elderly nursing tasks. In this algorithm, the elderly are clustered first according to the required caregiver grade and position to reduce the calculation scale; then genetic algorithms, real-number coding and elite retention strategies are all used to plan the service path of the caregiver to improve efficiency. Finally, the algorithm proposed in this paper is applied to real data. The results that the cost and the time required for path planning after clustering the elderly can be reduced effectively by the genetic algorithm is shown in this experiment. Through the analysis of the number of different levels of nursing workers required in the results, some suggestions are provided on the proportional relationship between the number of nursing workers required in each level and the number of the elderly served.

Key words: mean shift, genetic algorithm, nursing workers scheduling, multipath planning

CLC Number: 

  • TP301.6
[1]GOTO A, NAKAMURA H. A study on appropriate road spacing for the functionally hierarchical network planning[J]. Transportation Research Procedia, 2017, 25:3817-3825. DOI:10.1016/j.trpro.2017.05.266.
[2]ZHENG L, HE Z M, LIANG W. VRP problem solving based on adaptive dynamic search ant colony algorithm[J]. Journal of Physics:Conference Series, 2020, 1487:012030. DOI:10.1088/1742-6596/1487/1/012030.
[3]BORYCZKAOU, SZWARC K. Selected variants of a Memetic Algorithm for JSP: a comparative study[J]. International Journal of Production Research, 2019, 57(22):7142-7157. DOI:10.1080/00207543.2019.1581385.
[4]冯翔, 马美怡, 施尹, 等. 基于社会群体搜索算法的机器人路径规划[J]. 计算机研究与发展, 2013, 50(12):2543-2553.
[5]叶苗, 王宇平, 魏静萱. 基于多移动节点和遗传算法的传感器网络覆盖修复策略[J]. 通信学报, 2014, 35(12):45-52, 61.
[6]朱杰, 张培斯, 张询影, 等. 基于改进蚁群算法的多时间窗车辆路径问题[J]. 计算机技术与发展, 2019, 29(1):102-105. DOI:10.3969/j.issn.1673-629X.2019.01.021.
[7]魏唯, 欧阳丹彤, 吕帅, 等. 动态不确定环境下多目标路径规划方法[J]. 计算机学报, 2011, 34(5):836-846. DOI:10.3724/SP.J.1016.2011.00836
[8]蔺一帅, 李青山, 陆鹏浩, 等. 智能仓储货位规划与AGV路径规划协同优化算法[J]. 软件学报, 2020, 31(9):2770-2784. DOI:10.13328/j.cnki.jos.005944.
[9]中国老龄协会. 老龄产业有望成为经济发展新增长点:《需求侧视角下老年人消费及需求意愿研究报告》在京发布[EB/OL]. (2019-04-16)[2020-10-18]. http://www.cncaprc.gov.cn/llxw/188883.jhtml.
[10]BEGUR S V, MILLER D M, WEAVER J R. An integrated spatial DSS for scheduling and routing home-health-care nurses[J]. INFORMS Journal on Applied Analytics, 1997, 27(4):35-48. DOI:10.1287/inte.27.4.35.
[11]SHI Y, BOUDOUH T, GRUNDER O. A hybrid genetic algorithm for a home health care routing problem with time window and fuzzy demand[J]. Expert Systems with Applications, 2017, 72:160-176. DOI:10.1016/j.eswa.2016.12.013.
[12]DECERLE J, GRUNDER O,HAJJAM EL HASSANI A, et al. A memetic algorithm for a home health care routing and scheduling problem[J]. Operations Research for Health Care, 2018, 16:59-71. DOI:10.1016/j.orhc.2018.01.004.
[13]资元星. 居家养老预约调度与路径规划问题研究综述[J]. 经营与管理, 2019(1):143-145. DOI:10.16517/j.cnki.cn12-1034/f.2019.01.043.
[14]杨欣潼, 张婷, 白丽平, 等. 社区居家养老服务的预约调度与路径规划问题研究:基于改善蚁群算法[J]. 系统工程理论与实践, 2019, 39(5):1212-1224. DOI:10.12011/1000-6788-2017-1328-13.
[15]卢慧芳.广州市养老机构护理分级的现况研究[D]. 广州:南方医科大学,2007.
[16]HUANG Z Y, LIN S, LONG L L, et al. Predicting the morbidity of chronic obstructive pulmonary disease based on multiple locally weighted linear regression model with K-means clustering[J]. International Journal of Medical Informatics, 2020, 139:104141. DOI:10.1016/j.ijmedinf.2020.104141.
[17]ISWANTO I A, CHOA T W, LI B. Object tracking based on meanshift and particle-kalman filter algorithm with multi features[J]. Procedia Computer Science, 2019, 157:521-529. DOI:10.1016/j.procs.2019.09.009.
[18]卜秋瑾, 段隆振, 段文影. 结合遗传k均值改进的密度峰值聚类算法[J]. 计算机工程与设计, 2020, 41(4):1012-1016. DOI:10.16208/j.issn1000-7024.2020.04.019.
[19]D’URSO P, VITALE V. A robust hierarchical clustering for georeferenced data[J]. Spatial Statistics, 2020, 35:100407. DOI:10.1016/j.spasta.2020.100407.
[20]TANG F Q, WANG C N, SU J X, et al. Spectral clustering-based community detection using graph distance and node attributes[J]. Computational Statistics, 2020, 35(1):69-94. DOI:10.1007/s00180-019-00909-8.
[21]王爽, 夏玉, 焦李成. 基于均值漂移的自适应纹理图像分割方法[J]. 软件学报, 2010, 21(6):1451-1461. DOI:10.3724/SP.J.1001.2010.03723.
[22]云廷进, 郭永彩, 高潮. 基于粒子Mean Shift迁移的红外人体目标跟踪算法[J]. 计算机学报, 2009, 32(6):1222-1228. DOI:10.3724/SP.J.1016.2009.01222.
[23]戚荣志, 王志坚, 黄宜华, 等. 基于Spark的并行化组合测试用例集生成方法[J]. 计算机学报, 2018, 41(6):1064-1079. DOI:10.11897/SP.J.1016.2018.01284.
[24]何远, 张玉清, 张光华. 基于黑盒遗传算法的Android驱动漏洞挖掘[J]. 计算机学报, 2017, 40(5):1031-1043. DOI:10.11897/SP.J.1016.2017.01031.
[25]梁晓萍, 罗晓曙. 基于遗传自适应的维纳滤波图像去模糊算法[J]. 广西师范大学学报(自然科学版), 2017, 35(4):17-23. DOI:10.16088/j.issn.1001-6600.2017.04.003.
[26]刘焕淋, 李瑞艳, 孔德谦, 等. 基于多目标遗传算法优化弹性光网络的多路径保护机制[J]. 电子与信息学报, 2016, 38(9):2261-2267.
[27]许伦辉, 黄宝山, 钟海兴. AGV系统路径规划时间窗模型及算法[J]. 广西师范大学学报(自然科学版), 2019, 37(3):1-8. DOI:10.16088/j.issn.1001-6600.2019.03.001.
[1] XU Lunhui, CAO Yuchao, LIN Peiqun. Location and Dispatching of Multiple Emergency Materials Center Based on Fusion Immune Optimization and Genetic Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 1-13.
[2] YE Qing, HUANG Qiang, NIE Bin, LI Huan. An Adaptive High-Dimensional Outlier Recognition Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 107-114.
[3] LIANG Xiaoping, LUO Xiaoshu. The Adaptive Wiener Filtering Deblurring Based on the Genetic Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 17-23.
[4] CAI Bing, ZHANG Canlong, LI Zhixin. Tracking Infrared-visible Target with Joint Histogram [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 37-44.
[5] LIU Weiming, LI Rongrong, WANG Chao, HUANG Ling. Genetic Algorithm of Allocation of Highway Access Card [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 1-8.
[6] LIU Hong, WANG Qi-tao, XIA Wei-jun. The Three-dimensional Positioning Method of WSN Based on Quantum Genetic Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 49-54.
[7] LE Mei-long, GAO Jin-min. Coordinated Optimization Model for Air Fleet Assignment and Seat Inventory Control Under Hub-and-Spoke Route Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(3): 33-40.
[8] ZHAO Xin-chao, WU Zhao-jun. Multiple Bits Greedy Mutation-based Genetic Algorithm for Knapsack Problem [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 41-47.
[9] CAO Yong-chun, SHAO Ya-bin, TIAN Shuang-liang, CAI Zheng-qi. A Clustering Method Based on Immune Genetic Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 59-64.
[10] JIANG Xiao-feng, XU Lun-hui, ZHU Yue. Short-term Traffic Flow Prediction Based on SVM [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 13-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHUANG Fenghong, MA Jiangming, ZHANG Yajun, SU Jing, YU Fangming. Eco-Physiological Responses of Leaves of Isoetes sinensis to Light Intensity[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 93 -100 .
[2] ZHANG Ru, ZHANG Bei, REN Hongrui. Spatio-temporal Dynamics Analysis and Its Affecting Factors of Cropland Loss in Xuangang Mining Area, Shanxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 121 -132 .
[3] WANG Mengfei, HUANG Song. Spatial Linkage of Tourism Economy of Cities in West River Economic Belt in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 144 -150 .
[4] TENG Zhijun, LÜ Jinling, GUO Liwen, XU Yuanyuan. Coverage Strategy of Wireless Sensor Network Based on Improved Particle Swarm Optimization Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 9 -16 .
[5] FENG Xiu, MA Nannan, ZHI Hongtao, HAN Shuangqiao, ZHANG Xiang. Removal of Low Concentration Cadmium Ion in the Wastewater by Heavy Metal Capturing Agent UDTC[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 63 -67 .
[6] LIN Yue. The Fault Diagnosis of Charging Piles Based on Hybrid AP-HMM Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 25 -33 .
[7] HUANG Bingfang,WEN Binghai,QIU Wen,ZHAO Wanling,CHEN Yanyan. Research on Real Time Measurement of Contact Angle Based on Lattice Boltzmann Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 34 -43 .
[8] HU Wenjun. Delay Consensus of Leader-following Multi-agent Systems via the Adaptive Distributed Control[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 70 -75 .
[9] LIANG Yan. Non-alkaloid Chemical Constituents from the Chinese Medical Plant Stephania dielsiana[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 95 -98 .
[10] XIE Jing. Reverse Projection of the Central Nucleus of Amygdala in Mice[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 149 -157 .