Journal of Guangxi Normal University(Natural Science Edition) ›› 2020, Vol. 38 ›› Issue (2): 107-114.doi: 10.16088/j.issn.1001-6600.2020.02.012

Previous Articles     Next Articles

An Adaptive High-Dimensional Outlier Recognition Method

YE Qing, HUANG Qiang, NIE Bin*, LI Huan   

  1. School of Computer Science,Jiangxi University of Traditional Chinese Medicine,Nanchang Jiangxi 330004,China
  • Received:2019-07-09 Published:2020-04-02

Abstract: Aiming at the problem that the traditional distance-based outlier recognition method can not be directly and effectively applied to high-dimensional data and the recognition effect is affected by parameters, an adaptive high-dimensional outlier recognition method is proposed, which uses genetic algorithm. The optimized Gaussian Restricted Boltzmann machine nonlinearly maps high-dimensional data to low-dimensional space, and then performs outlier recognition in low-dimensional data space by adaptive outlier recognition. UCI high-dimensional data and high-dimensional data of traditional Chinese medicine are used to verify the experiment. The experimental results show that the adaptive high-dimensional outlier recognition method can adaptively and effectively identify outliers in high-dimensional data.

Key words: outlier identification, GRBM, adaptive algorithm, genetic algorithm, Chinese medicine information

CLC Number: 

  • TP301
[1] 张忠平,宋少英,宋晓辉.基于PCA及属性距离和的孤立点检测算法[J].计算机工程与应用,2009,45(17):139-141,243. DOI:10.3778/j.issn.1002-8331.2009.17.042.
[2] MEJIA A F,NEBEL M B,ELOYAN A,et al.PCA leverage: outlier detection for high-dimensional functional magnetic resonance imaging data[J].Biostatistics,2017,18(3):521-536.DOI:10.1093/biostatistics/kxw050.
[3] JOHNSTONE I M,PAUL D.PCA in high dimensions: an orientation[J].Proceedings of the IEEE,2018,106(8):1277-1292. DOI: 10.1109/JPROC.2018.2846730.
[4] JU Fujiao,SUN Yanfeng,GAO Junbin,et al.Image outlier detection and feature extraction via L1-norm based 2D probabilistic PCA[J].IEEE Transactions on Image Processing,2015,24(12):4834-4846.DOI:10.1109/TIP.2015.2469136.
[5] HUANG Haiping.Statistical mechanics of unsupervised feature learning in a restricted Boltzmann machine with binary synapses[J].Journal of Statistical Mechanics:Theory and Experiment,2017,2017(5):053302.DOI:10.1088/1742-5468/aa6ddc.
[6] 酆勇,熊庆宇,石为人,等.一种基于受限玻尔兹曼机的说话人特征提取算法[J].仪器仪表学报,2016,37(2):256-262.DOI: 10.19650/j.cnki.cjsi.2016.02.003.
[7] LI Ziqiang,CAI Xun,LIANG Ti.Gaussian-Bernoulli based convolutional restricted Boltzmann machine for images feature extraction[C]//Neural Information Processing:Lecture Notes in Computer Science vol 9948.Berlin:Springer,2016:593-602.DOI:10.1007/978-3-319-46672-9_66.
[8] 李敬微,顾晓辉,曹蕾,等.基于包络谱分析和高斯受限玻尔兹曼机的滚动轴承故障诊断方法[J].机械研究与应用,2016,29(2):87-90,93.DOI:10.16576/j.cnki.1007-4414.2016.02.029.
[9] 陈曦.基于高斯伯努利受限玻尔兹曼机的过程监测研究[D].杭州:浙江大学,2016.
[10]TRAN S N,BENETOS E,d′AVILA GARCEZ A.Learning motion-difference features using Gaussian restricted Boltzmann machines for efficient human action recognition[C]//2014 International Joint Conference on Neural Networks.Piscataway,NJ:IEEE Press,2014:2123-2129.DOI:10.1109/IJCNN.2014.6889945.
[11]LAMOUS-SWEENEY J D.Deep learning using genetic algorithms[D].Rochester,NY:Rochester Institute of Technology, 2012.
[12]TRAN L,FAN Liyue,SHAHABI C.Distance-based outlier detection in data streams[J].Proceedings of the VLDB Endowment,2016,9(12):1089-1100.DOI:10.14778/2994509.2994526.
[13]ZHANG Ying,ZHENG Hongyuan,DING Qiulin.Top-k distance-based outlier detection on uncertain data[C]//Cloud Computing and Security:Lecture Notes in Computer Science Vol 9483.Berlin:Springer,2015:521-535.DOI:10.1007/ 978-3-319-27051-7_45.
[14]YAN Qingli,CHEN Jianfeng,De STRYCKER L.An outlier detection method based on mahalanobis distance for source localization[J].Sensors,2018,18(7):2186.DOI:10.3390/s18072186.
[15]陆声链,林士敏.基于距离的孤立点检测研究[J].计算机工程与应用,2004,40(33):73-75,94.DOI:10.3321/j.issn: 1002-8331.2004.33.022.
[16]樊峰峰,李战怀,陈群,等.一种基于离群点检测的自动实体匹配方法[J].计算机学报,2017,40(10):2197-2211. DOI:10.11897/SP.J.1016.2017.02197.
[17]李春生,于澍,刘小刚.基于改进距离和的异常点检测算法研究[J].计算机技术与发展,2019,29(3):97-100. DOI:10.3969/j.issn.1673-629X.2019.03.021.
[18]张春霞,姬楠楠,王冠伟.受限波尔兹曼机[J].工程数学学报,2015,32(2):159-173.DOI:10.3969/j.issn.1005-3085.2015. 02.001.
[19]周志华.机器学习[M].北京:清华大学出版社, 2016.
[20]SUBRAMANIAM S,PALPANAS T,PAPADOPOULOS D,et al.Online outlier detection in sensor data using non-parametric models[C]//Proceedings of the 32nd International Conference on Very Large Data Bases.Seoul:VLDB Endowment,2006:187-198.
[21]ANNIE G.Anomaly detection based on machine learning:dimensionality reduction using PCA and classification using SVM[J].International Journal of Computer Applications,2012,47(21):5-8.DOI:10.5120/7470-0475.
[1] LIANG Xiaoping, LUO Xiaoshu. The Adaptive Wiener Filtering Deblurring Based on the Genetic Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 17-23.
[2] LIU Weiming, LI Rongrong, WANG Chao, HUANG Ling. Genetic Algorithm of Allocation of Highway Access Card [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 1-8.
[3] LIU Hong, WANG Qi-tao, XIA Wei-jun. The Three-dimensional Positioning Method of WSN Based on Quantum Genetic Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 49-54.
[4] LE Mei-long, GAO Jin-min. Coordinated Optimization Model for Air Fleet Assignment and Seat Inventory Control Under Hub-and-Spoke Route Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(3): 33-40.
[5] ZHAO Xin-chao, WU Zhao-jun. Multiple Bits Greedy Mutation-based Genetic Algorithm for Knapsack Problem [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 41-47.
[6] CAO Yong-chun, SHAO Ya-bin, TIAN Shuang-liang, CAI Zheng-qi. A Clustering Method Based on Immune Genetic Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 59-64.
[7] JIANG Xiao-feng, XU Lun-hui, ZHU Yue. Short-term Traffic Flow Prediction Based on SVM [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 13-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MENG Chunmei, LU Shiyin, LIANG Yonghong, MO Xiaomin, LI Weidong, HUANG Yuanjie, CHENG Xiaojing, SU Zhiheng, ZHENG Hua. Electron Microscopy Study on the Apoptosis and Autophagy of the Hepatic Stellate Cells Induced by Total Alkaloids[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 76 -79 .
[2] LIN Yongsheng, PEI Jianguo, ZOU Shengzhang, DU Yuchao, LU Li. Red Bed Karst and Its Hydrochemical Characteristics of Groundwater in the Downstream of Qingjiang River, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 113 -120 .
[3] LI Xianjiang, SHI Shuqin, CAI Weimin, CAO Yuqing. Simulation of Land Use Change in Tianjin Binhai New Area Based on CA-Markov Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 133 -143 .
[4] WANG Mengfei, HUANG Song. Spatial Linkage of Tourism Economy of Cities in West River Economic Belt in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 144 -150 .
[5] TENG Zhijun, LÜ Jinling, GUO Liwen, XU Yuanyuan. Coverage Strategy of Wireless Sensor Network Based on Improved Particle Swarm Optimization Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 9 -16 .
[6] MIAO Xinyan, ZHANG Long, LUO Yantao, PAN Lijun. Study on a Class of Alternative Competition-Cooperation Hybrid Population Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 25 -31 .
[7] HUANG Rongli, LI Changyou, WANG Minqing. Bernstein's Theorem for a Class of Ordinary Differential Equations Ⅱ[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 50 -55 .
[8] CHEN Menghua,LIU Min,WANG Ning. Predictive Power of the Weizscker-Skyrme Nuclear Mass Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 1 -8 .
[9] WAN Lei,LUO Yuling,HUANG Xingyue. Monitoring Platform for the Hardware Spike Neural Networks[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 9 -16 .
[10] LIN Yue. The Fault Diagnosis of Charging Piles Based on Hybrid AP-HMM Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 25 -33 .