Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (3): 20-26.doi: 10.16088/j.issn.1001-6600.2020051802
Previous Articles Next Articles
LÜ Huilian, HU Weiping*
CLC Number:
[1]韩文静,李海峰,阮华斌,等.语音情感识别研究进展综述[J]. 软件学报,2014,25(1):37-50. DOI:10.13328/j.cnki.jos.004497. [2]SATT A,ROZENBERG S,HOORY R. Efficient emotion recognition from speech using deep learning on spectrograms[C]// Interspeech 2017. BAIXAS: International Speech Communication Association,2017:1089-1093. [3]桑立锋,吴朝晖,杨莹春. 基于GMM的语音帧得分上的重优化[J]. 广西师范大学学报(自然科学版),2003,21(1):180-184. [4]GHOSH S,LAKSANA E,MORENCY L P,et al. Representation learning for speech emotion recognition[C]// Interspeech 2016. BAIXAS: International Speech Communication Association, 2016:3603-3607. DOI:10.21437/Interspeech.2016-692. [5]ALDENEH Z,PROVOST E M. Using regional saliency for speech emotion recognition[C]// 2017 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP). Piscataway,NJ: IEEE Press,2017:2741-2745. [6]CUMMINS N,AMIRIPARIAN S,HAGERER G,et al. An image-based deep spectrum feature representation for the recognition of emotional speech[C]// Proceedings of the 25th ACM international conference on Multimedia. New York, NY: Association for Computing Machinery, 2017:478-484. [7]WANG K X,AN N,LI B N,et al. Speech emotion recognition using Fourier parameters[J]. IEEE Transactions on Affective Computing,2015,6(1):69-75. [8]TRIGEORGIS G,RINGEVAL F,BRUECKNER R,et al. Adieu features? End-to-end speech emotion recognition using a deep convolutional recurrent network[C]// 2016 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP). Piscataway,NJ: IEEE Press,2016:5200-5204. DOI:10.1109/ICASSP.2016.7472669. [9]LATIF S,RANA R,KHALIFA S,et al. Direct modelling of speech emotion from raw speech[EB/OL].(2019-07-03)[2020-05-18]. https://arxiv.org/pdf/1904.03833v3.pdf. [10]LI P C,SONG Y,MCLOUGHLIN V I,et al. An attention pooling based representation learning method for speech emotion recognition[C]// Interspeech 2018. BAIXAS: International Speech Communication Association, 2018:3087-3091. [11]LIM W,JANG D,LEE T. Speech emotion recognition using convolutional and recurrent neural networks[C]// 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference(APSIPA). Piscataway, NJ: IEEE Press, 2017. [12]李彦东,郝宗波,雷航.卷积神经网络研究综述[J]. 计算机应用,2016,36(9):2508-2515,2565. DOI:10.11772/j.issn.1001-9081.2016.09.2508. [13]HUANG C W,NARAYANAN S S. Characterizing types of convolution in deep convolutional recurrent neural networks for robust speech emotion recognition[EB/OL].(2018-06-13)[2020-05-18]. https://arxiv.org/pdf/1706.02901.pdf. [14]NEUMANN M,VU N T. Attentive convolutional neural network based speech emotion recognition:a study on the impact of input features,signal length,and acted speech[C]// Interspeech 2017. BAIXAS: International Speech Communication Association, 2017: 1263-1267. DOI:10.21437/Interspeech.2017-917. [15]HOCHREITER S,SCHMIDHUBER J. Long Short-Term Memory[J]. Neural computation,1997,9(8):1735-1780. DOI:10.1007/978-3-642-24797-2_4. [16]GRAVES A,FERNÁNDEZ S,SCHMIDHUBER J. Bidirectional LSTM networks for improved phoneme classification and recognition[M]// DUCH W, KACPRZYK J, ZADRONY S. Artificial Neural Networks:Formal Models and Their Applications-ICANN 2005. Berlin: Springer,2005:799-804. [17]KIM J W,SAUROUS R. Emotion recognition from human speech using temporal information and deep learning[C]// Interspeech 2018. BAIXAS: International Speech Communication Association, 2018:937-940. [18]BUSSO C,BULUT M,LEE C C,et al. IEMOCAP:interactive emotional dyadic motion capture database[J]. Language Resources and Evaluation,2008,42(4):335-359. DOI:10.1007/s10579-008-9076-6. [19]TZIRAKIS P,ZHANG J H,SCHULLER B W. End-to-end speech emotion recognition using deep neural networks[C]// 2018 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP). Piscataway, NJ: IEEE, 2018:5089-5093. [20]ZHANG S Q, ZHANG S L, HUANG T J. Speech emotion recognition using deep convolutional neural network and discriminant temporal pyramid matching[J]. IEEE Transactions on Multimedia,2018,20(6):1576-1590. [21]CHEN M Y,HE X J,YANG J,et al. 3-D Convolutional recurrent neural networks with attention model for speech emotion recognition[J]. IEEE Signal Processing Letters,2018,25(10):1440-1444. [22]MA X,WU Z Y,JIA J,et al. Emotion recognition from variable-length speech segments using deep learning on spectrograms[C]// Interspeech 2018. BAIXAS: International Speech Communication Association, 2018:3683-3687. DOI:10.21437/Interspeech.2018-2228. |
[1] | BAI Jie, GAO Haili, WANG Yongzhong, YANG Laibang, XIANG Xiaohang, LOU Xiongwei. Detection of Students’ Classroom Performance Based on Faster R-CNN and Transfer Learning with Multi-Channel Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 1-11. |
[2] | LIU Yingxuan, WU Xiru, XUE Ganggang. Multi-target Real-time Detection for Road Traffic SignsBased on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 96-106. |
|