Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (4): 153-164.doi: 10.16088/j.issn.1001-6600.2023100902

Previous Articles     Next Articles

Multi-strategy Improved of Hunter-Prey Optimization Algorithm and Its Application

TANG Tianbing*, LI Jifa, YAN Yi*   

  1. School of Computer, Electronics and Information, Guangxi University, Nanning Guangxi 530004, China
  • Received:2023-10-09 Revised:2023-12-29 Online:2024-07-25 Published:2024-09-05

Abstract: Aiming at the shortcomings of the hunter-prey optimization algorithm, which is easy to fall into local optimum and low convergence precision, a multi-strategy improved hunter-prey optimization algorithm is proposed. The proposed algorithm is based on the idea of dynamic search, and the adaptive adjustment algorithm is transformed from global search to local search; the historical information of the population is used for differential evolution to improve the diversity of the population; combined with the elite pool strategy and nonlinear step size, the algorithm is prevented from falling into local optimum, to improve the convergence accuracy of the algorithm. The improved algorithm and six other classical or state-of-the-art optimization algorithms are evaluated for their performance on 10 large-scale (10 000-dimensional) test functions. The experimental results show that the proposed algorithm has better global optimization capabilities, optimization accuracy and stability, and can effectively solve high-dimensional optimization problems. Finally, the multi-strategy improved hunter-prey optimization algorithm is applied to the path planning problem of 3D UAV. The simulation experiment results show that the algorithm can also solve the optimal result in the 3D path planning optimization problem of UAVs.

Key words: hunter-prey optimization algorithm(HPO), differential evolution, high dimensional optimization, multi-strategy, path planning

CLC Number:  TP301.6
[1] HUANG C W, LI Y X, YAO X. A survey of automatic parameter tuning methods for metaheuristics[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(2): 201-216. DOI: 10.1109/TEVC.2019.2921598.
[2] 王鹤静, 王丽娜. 机器人路径规划算法综述[J]. 桂林理工大学学报, 2023, 43(1): 137-147. DOI: 10.3969/j.issn.1674-9057.2023.01.017.
[3] 汪涛, 林川, 郭生伟. 基于混合策略改进鲸鱼优化算法的模糊时间序列模型[J]. 电子设计工程, 2023, 31(15): 98-106. DOI: 10.14022/j.issn1674-6236.2023.15.021.
[4] 符强, 孔健明, 纪元法, 等. 基于改进粒子群优化PID的双补偿时钟同步算法[J]. 桂林电子科技大学学报, 2023, 43(1): 27-34. DOI: 10.16725/j.cnki.cn45-1351/tn.2023.01.011.
[5] WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82. DOI: 10.1109/4235.585893.
[6] 李洋州, 顾磊. 基于曲线自适应和模拟退火的蝗虫优化算法[J]. 计算机应用研究, 2019, 36(12): 3637-3643. DOI: 10.19734/j.issn.1001-3695.2018.07.0580.
[7] 李大海, 詹美欣, 王振东. 求解多峰目标函数的改进阴阳对算法[J]. 计算机应用研究, 2022, 39(5): 1402-1409. DOI: 10.19734/j.issn.1001-3695.2021.11.0465.
[8] 逯苗, 何登旭, 曲良东. 非线性参数的精英学习灰狼优化算法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 55-67. DOI: 10.16088/j.issn.1001-6600.2020093002.
[9] 王钦甜, 沈艳军. 多阶段的郊狼优化算法[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 105-117. DOI: 10.16088/j.issn.1001-6600.2022110604.
[10] 王喜敏, 袁杰, 寇巧媛. 一种基于多策略的改进黏菌算法[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 98-108. DOI: 10.16088/j.issn.1001-6600.2021122104.
[11] PERAZA-VÁZQUEZ H, PEÑA-DELGADO A F, ECHAVARRÍA-CASTILLO G, et al. A bio-inspired method for engineering design optimization inspired by dingoes hunting strategies[J]. Mathematical Problems in Engineering, 2021, 2021: 9107547. DOI: 10.1155/2021/9107547.
[12] NARUEI I, KEYNIA F. Wild horse optimizer: a new meta-heuristic algorithm for solving engineering optimization problems[J]. Engineering with Computers, 2022, 38(Suppl 4): 3025-3056. DOI: 10.1007/s00366-021-01438-z.
[13] ALSATTAR H A, ZAIDAN A A, ZAIDAN B B. Novel meta-heuristic bald eagle search optimisation algorithm[J]. Artificial Intelligence Review, 2020, 53(3): 2237-2264. DOI: 10.1007/s10462-019-09732-5.
[14] NARUEI I, KEYNIA F, SABBAGH MOLAHOSSEINI A. Hunter-prey optimization: algorithm and applications[J]. Soft Computing, 2022, 26(3): 1279-1314. DOI: 10.1007/s00500-021-06401-0.
[15] ELSHAHED M, EL-RIFAIE A M, TOLBA M A, et al. An innovative hunter-prey-based optimization for electrically based single-, double-, and triple-diode models of solar photovoltaic systems[J]. Mathematics, 2022, 10(23): 4625. DOI: 10.3390/math10234625.
[16] RAMADAN H A, KHAN B, DIAB A A Z. Accurate parameters estimation of three diode model of photovoltaic modules using hunter-prey and wild horse optimizers[J]. IEEE Access, 2022, 10: 87435-87453. DOI: 10.1109/ACCESS.2022.3199001.
[17] INKOLLU S R, ANJANEYULU G V P, KOTAIAH N C, et al. An application of hunter-prey optimization for maximizing photovoltaic hosting capacity along with multi-objective optimization in radial distribution network[J]. International Journal of Intelligent Engineering & Systems, 2022, 15(4): 575-584. DOI: 10.22266/ijies2022.0831.52.
[18] SHAHEEN A M, EL-SEHIEMY R A, GINIDI A, et al. Optimal allocation of PV-STATCOM devices in distribution systems for energy losses minimization and voltage profile improvement via hunter-prey-based algorithm[J]. Energies, 2023, 16(6): 2790. DOI: 10.3390/en16062790.
[19] ALSHAHRANI H J, HASSAN A Q A, TARMISSI K, et al. Hunter prey optimization with hybrid deep learning for fake news detection on Arabic corpus[J]. Computers, Materials & Continua, 2023, 75(2): 4255-4272. DOI: 10.32604/cmc.2023.034821.
[20] XIANG C Y, GU J F, LUO J, et al. Structural damage identification based on convolutional neural networks and improved hunter-prey optimization algorithm[J]. Buildings, 2022, 12(9): 1324. DOI: 10.3390/buildings12091324.
[21] MA J, LIU F M. Bearing fault diagnosis with variable speed based on fractional hierarchical range entropy and hunter-prey optimization algorithm-optimized random forest[J]. Machines, 2022, 10(9): 763. DOI: 10.3390/machines10090763.
[22] 王芬, 杨媛. 基于猎人猎物优化算法求解TSP问题[J]. 宁夏师范学院学报, 2022, 43(7): 59-63, 71. DOI: 10.3969/j.issn.1674-1331.2022.07.008.
[23] FU M X, LIU Q. An improved hunter-prey optimization algorithm and its application[C] //2022 IEEE International Conference on Networking, Sensing and Control (ICNSC). Piscataway, NJ: IEEE, 2022: 1-7. DOI: 10.1109/ICNSC55942.2022.10004114.
[24] ABDELATY A M, YOUSRI D, CHELLOUG S, et al. Fractional order adaptive hunter-prey optimizer for feature selection[J]. Alexandria Engineering Journal, 2023, 75: 531-547. DOI: 10.1016/j.aej.2023.05.092.
[25] KHADIDOS A O, ALKUBAISY Z M, KHADIDOS A O, et al. Binary hunter-prey optimization with machine learning: based cybersecurity solution on internet of things environment[J]. Sensors, 2023, 23(16): 7207. DOI: 10.3390/s23167207.
[26] HASSAN M H, DAQAQ F, KAMEL S, et al. An enhanced hunter-prey optimization for optimal power flow with FACTS devices and wind power integration[J]. IET Generation, Transmission & Distribution, 2023, 17(14): 3115-3139. DOI: 10.1049/gtd2.12879.
[27] 常耀华, 韦根原. 基于领导者竞争策略的改进猎人猎物优化算法[J]. 计算机应用研究, 2024, 41(1): 142-149. DOI: 10.19734/j.issn.1001-3695.2023.05.0222.
[28] 鲁英达,张菁.基于改进猎人猎物算法的VMD-KELM短期负荷预测[J]. 电气工程学报, 2023, 18(4): 228-238. DOI: 10.11985/2023.04.025.
[29] 华罗庚, 王元. 数论在近代分析中的应用[M]. 北京: 科学出版社, 1978: 1-99.
[30] HARIFI S, MOHAMMADZADEH J, KHALILIAN M, et al. Giza pyramids construction: an ancient-inspired metaheuristic algorithm for optimization[J]. Evolutionary Itelligence, 2021, 14(4): 1743-1761. DOI: 10.1007/s12065-020-00451-3.
[31] FARAMARZI A, HEIDARINEJAD M, STEPHENS B, et al. Equilibrium optimizer: a novel optimization algorithm[J]. Knowledge-Based Systems, 2020, 191: 105190. DOI: 10.1016/j.knosys.2019.105190.
[32] 李克文, 梁永琪, 李绍辉. 基于混合策略改进的花朵授粉算法[J]. 计算机应用研究, 2022, 39(2): 361-366. DOI: 10.19734/j.issn.1001-3695.2021.08.0311.
[33] STORN R, PRICE K.Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of global optimization, 1997,11(4): 341-359. DOI: 10.1023/A:1008202821328.
[34] SAREMI S, MIRJALILI S, LEWIS A. Grasshopper optimisation algorithm: theory and application[J]. Advances in Engineering Software, 2017, 105: 30-47. DOI: 10.1016/j.advengsoft.2017.01.004.
[35] 李煜, 尚志勇, 刘景森. 求解函数优化问题的改进布谷鸟搜索算法[J]. 计算机科学, 2020, 47(1): 219-230. DOI: 10.11896/jsjkx.181102165.
[36] YAO X, LIU Y, LIN G M. Evolutionary programming made faster[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(2): 82-102. DOI: 10.1109/4235.771163.
[1] XU Lunhui, LIN Shicheng. Research on Full Coverage Path Planning Algorithm of Sweeping Robot Based on Divide and Conquer [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 54-62.
[2] HU Juntao, SHI Xiaohu, MA Deyin. Nursing Workers Scheduling Based on Mean Shift and Genetic Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 27-39.
[3] LÜ Panlong,WENG Xiaoxiong, PENG Xinjian. Public Traffic Passenger Recognition Based on Differential Evolution Algorithm SVM [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 106-114.
[4] YANG Jun-yao, MENG Zu-qiang. Path Planning Based on Time-dependent Logistics Networks Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 152-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Jie, SONG Shuang, WU Bin. Overview of Image USM Sharpening Forensics and Anti-forensics Techniques[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 1 -16 .
[2] AI Congcong, GONG Guoli, JIAO Xiaoyu, TIAN Lu, GAI Zhongchao, GOU Jingxuan, LI Hui. Komagataella phaffii Serves as a Model Organism for Emerging Basic Research[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 17 -26 .
[3] ZHAI Yanhao, WANG Yanwu, LI Qiang, LI Jingkun. Progress of Dissolved Organic Matter in Inland Water by Three-Dimensional Fluorescence Spectroscopy Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 34 -46 .
[4] CHEN Li, TANG Mingzhu, GUO Shenghui. Cyber-Physical Systems State Estimation and Actuator Attack Reconstruction of Intelligent Vehicles[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 59 -69 .
[5] LI Chengqian, SHI Chen, DENG Minyi. Study for the Electrocardiographic Signal of Brugada Syndrome Patients Using Cellular Automaton[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 86 -98 .
[6] LÜ Hui, LÜ Weifeng. Fundus Hemorrhagic Spot Detection Algorithm Based on Improved YOLOv5[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 99 -107 .
[7] YI Jianbing, PENG Xin, CAO Feng, LI Jun, XIE Weijia. Research on Point Cloud Registration Algorithm Based on Multi-scale Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 108 -120 .
[8] LI Li, LI Haoze, LI Tao. Multi-primary-node Byzantine Fault-Tolerant Consensus Mechanism Based on Raft[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 121 -130 .
[9] ZHAO Xiaomei, DING Yong, WANG Haitao. Maximum Likelihood DOA Estimation Based on Improved Monarch Butterfly Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 131 -140 .
[10] ZHU Yan, CAI Jing, LONG Fang. Statistical Analysis of Partially Step Stress Accelerated Life Tests for Compound Rayleigh Distribution Competing Failure Model Under Progressive Type-Ι Hybrid Censoring[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 159 -169 .