Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (4): 165-171.doi: 10.16088/j.issn.1001-6600.2023080802

Previous Articles     Next Articles

Effects of Herbivory and Competition on the Invasive Ability of Alien Species Myriophyllum aquaticum

DONG Lei1,2,3, JIANG Yong1,2*, LIANG Shichu1,2, YUAN Lige3,4,5, LI Feng3,4, YU Weicheng3,4   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environment Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China;
    3. Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha Hunan 410125, China;
    4. Key Laboratory of Agro-Ecological Processes in Subtropical Region, Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha Hunan 410125, China;
    5. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2023-08-08 Revised:2023-09-26 Online:2024-07-25 Published:2024-09-05

Abstract: In this paper, the invasive plant Myriophyllum aquaticum was taken as the target plant, and the interference factors were set with the competition of Vallisneria natans and the herbivory of Pomacea canaliculata to explore the effects of herbivory of P. canaliculata and competition of V. natans on the invasion of M. aquaticum. The results showed as follows: (1) The plant height and biomass of M. aquaticum were significantly decreased by P. canaliculata herbivory and V. natans competition, and the growth of M. aquaticum was inhibited. (2) Compared with the control, the biomass and plant height of M. aquaticum were significantly reduced under the combined treatment of herbivory of P. canaliculata and competition of V. natans. The superposition of these two factors enhanced the inhibition of M. aquaticum, but there was no significant interaction between herbivory and competition. (3) Under the combined influence of competition and herbivory, the logarithmic response ratio (ln RR) of M. aquaticum was not significantly different among different herbivory densities of P. canaliculata, and all were negative, indicating that V. natans inhibited the growth of M. aquaticum than that of P. canaliculata herbivory. Therefore, in the future water ecosystem restoration, the reasonable dense planting of V. natans can be used to control the invasion of M. aquaticum.

Key words: biological invasion, Myriophyllum aquaticum, Pomacea canaliculata, herbivory, competition

CLC Number:  Q948
[1] 冼晓青, 王瑞, 陈宝雄, 等. “世界100种恶性外来入侵物种”在我国大陆的入侵现状[J]. 生物安全学报, 2022, 31(1): 9-16. DOI: 10.3969/j.issn.2095-1787.2022.01.002.
[2] PYŠEK P, HULME P E, SIMBERLOFF D, et al. Scientists' warning on invasive alien species[J]. Biological Reviews, 2020, 732: 138677. DOI: 10.1111/brv.12627.
[3] MAGLIOZZI C, TSIAMIS K, VIGIAK O, et al. Assessing invasive alien species in European catchments: Distribution and impacts[J]. Science of the Total Environment, 2020, 732: 138677. DOI: 10.1016/j.scitotenv.2020.138677.
[4] GALLARDO B, CLAVERO M, SÁNCHEZ M I, et al. Global ecological impacts of invasive species in aquatic ecosystems[J]. Global Change Biology, 2016, 22(1): 151-163. DOI: 10.1111/gcb.13004.
[5] ZHOU J, PAN X, XU H T, et al. Invasive Eichhornia crassipes affects the capacity of submerged macrophytes to utilize nutrients[J]. Sustainability, 2017, 9(4): 565. DOI: 10.3390/su9040565.
[6] 南倩茹, 张晴, 张劲, 等. 撂荒地喜旱莲子草入侵群落特征与种间联结研究[J]. 长江流域资源与环境, 2023, 32(2): 427-439. DOI: 10.11870/cjlyzyyhj202302018.
[7] 丁瑜欣, 吴娟, 成水平. 水盾草入侵机制及防治对策[J]. 生物安全学报, 2020, 29(3): 176-180, 190. DOI: 10.3969/j.issn.2095-1787.2020.03.004.
[8] 赵本良, 章家恩, 戴晓燕, 等. 福寿螺对稻田水生植物群落结构的影响[J]. 生态学报, 2014, 34(4): 907-915. DOI: 10.5846/stxb201304030601.
[9] KOUBA A, OFICIALDEGUI F J, CUTHBERT R N, et al. Identifying economic costs and knowledge gaps of invasive aquatic crustaceans[J]. Science of the Total Environment, 2021, 813: 152325. DOI: 10.1016/j.scitotenv.2021.152325.
[10] 杜元宝, 涂炜山, 杨乐, 等. 外来入侵脊椎动物对生物多样性危害的研究进展[J]. 中国科学: 生命科学, 2023, 53(7): 1035-1054. DOI: 10.1360/SSV-2022-0033.
[11] 侯志勇, 谢永宏, 陈心胜, 等. 洞庭湖湿地的外来入侵植物研究[J]. 农业现代化研究, 2011, 32(6): 744-747. DOI: 10. 3969/j.issn.1000-0275.2011.06.023.
[12] 谢洪民. 环太湖地区水生植物多样性和入侵植物凤眼蓝水位响应实验研究[D]. 上海: 上海海洋大学, 2021.
[13] BRAGA R R, RIBEIRO V M, PADIAL A A, et al. Invasional meltdown: an experimental test and a framework to distinguish synergistic, additive, and antagonistic effects[J]. Hydrobiologia, 2019, 847(7): 1603-1618. DOI: 10.1007/s10750-019-04107-x.
[14] ACKERMAN J D, FALCÓN W, MOLINARI J, et al. Biotic resistance and invasional meltdown: consequences of acquired interspecific interactions for an invasive orchid, Spathoglottis plicata in Puerto Rico[J]. Biological Invasions, 2014, 16(11): 2435-2447. DOI: 10.1007/s10530-014-0676-3.
[15] ZHANG X L, YU H W, YU H H, et al. Highly competitive native aquatic species could suppress the growth of invasive aquatic species with similar traits[J]. Biological Invasions, 2021, 23(1): 267-280. DOI: 10.1007/s10530-020-02370-x.
[16] 和兰娣, 瞿鹏, 武千年, 等. 昆明市外来入侵物种现状及防控对策[J]. 环境保护科学, 2024, 50(1): 34-43. DOI: 10.16803/j.cnki.issn.1004-6216.202212043.
[17] 孙丽君, 杨振治, 郭佩琴, 等. 不同光照强度下物种组合对沉水植物苦草种间关系的影响[J]. 热带亚热带植物学报, 2023, 31(3): 325-333. DOI: 10.11926/jtsb.4586.
[18] YAN Y M, ODUOR A M O, LI F, et al. Opposite effects of nutrient enrichment and an invasive snail on the growth of invasive and native macrophytes[J]. Ecological Applications, 2024, 34(1): e2737. DOI: 10.1002/eap.2737.
[19] HEDGES L V, GUREVITCH J, CURTIS P S. The meta-analysis of response ratios in experimental ecology[J]. Ecology, 1999, 80(4): 1150-1156. DOI: 10.1890/0012-9658(1999)080[1150:TMAORR] 2.0.CO;2.
[20] ROSSIGNAUD L, KIMBERLEY M O, KELLY D, et al. Effects of competition and habitat heterogeneity on native-exotic plant richness relationships across spatial scales[J]. Diversity and Distributions, 2022, 28(5): 1093-1104. DOI: 10.1111/ddi.13516.
[21] 李慧燕, 陈冬青, 王慧, 等. 不同混种密度下杀真菌剂对黄顶菊与反枝苋种间竞争的影响[J]. 生态学杂志, 2015, 34(4): 1013-1018. DOI: 10.13292/j.1000-4890.20150304.023.
[22] KEMPEL A, CHROBOCK T, FISCHER M, et al. Determinants of plant establishment success in a multispecies introduction experiment with native and Alien species[J]. Proceedings of the National Academy of Sciences of the United State of America, 2013, 110(31): 12727-12732. DOI: 10.1073/pnas.1300481110.
[23] SANTAMARíA J, TOMAS F, BALLESTEROS E, et al. The role of competition and herbivory in biotic resistance against invaders: a synergistic effect[J]. Ecology, 2021, 102(9): e03440. DOI: 10.1002/ecy.3440.
[24] CHESSON P, KUANG J J. The interaction between predation and competition[J]. Nature, 2008, 456(7219): 235-238. DOI: 10.1038/nature07248.
[25] PARKER J D, BURKEPILE D E, HAY M E. Opposing effects of native and exotic herbivores on plant invasions[J]. Science, 2006, 311(5766): 1459-1461. DOI: 10.1126/science.1121407.
[26] ZHANG X L, YU H H, LV T, et al. Effects of different scenarios of temperature rise and biological control agents on interactions between two noxious invasive plants[J]. Diversity and Distributions, 2021, 27(12): 2300-2314. DOI: 10.1111/ddi.13406.
[27] LACH L, BRITTON D K, RUNDELL R J, et al. Food preference and reproductive plasticity in an invasive freshwater snail[J]. Biological Invasions, 2000, 2(4): 279-288. DOI: 10.1023/A:1011461029986.
[28] PETIT BON M, GUNNARSDOTTER INGA K, JÓNSDÓTTIR I S, et al. Interactions between winter and summer herbivory affect spatial and temporal plant nutrient dynamics in tundra grassland communities[J]. Oikos, 2020, 129(8): 1229-1242. DOI: 10.1111/oik.07074.
[29] 李宽意, 李艳敏, 刘正文. 叶片损害强度与基质营养水平对苦草补偿性生长的影响[J]. 应用生态学报, 2008, 19(11): 2369-2374.
[30] DAVIDSON A M, JENNIONS M, NICOTRA A B. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis[J]. Ecology Letters, 2011, 14(4): 419-431. DOI: 10.1111/j.1461-0248.2011.01596x.
[31] 刘艳杰, 黄伟, 杨强, 等. 近十年植物入侵生态学重要研究进展[J]. 生物多样性, 2022, 30(10): 22438. DOI: 10.17520/biods.2022438.
[32] RASMANN S. As above so below: recent and future advances in plant-mediated above-and belowground interactions[J]. American Journal of Botany, 2022, 109(5): 672-675. DOI: 10.1002/ajb2.1845.
[33] 黄庆荣, 施逸啸, 江蓝, 等. 格氏栲天然林植物功能性状与系统发育对林窗大小的响应[J]. 森林与环境学报, 2023, 43(5): 449-456. DOI: 10.13324/j.cnki.jfcf.2023.05.001.
[34] 郑彤, 周启星, 欧阳少虎. 植物-微生物共生系统功能强化及其在降污固碳中的作用[J]. 科学通报, 2023, 68(24): 3155-3171. DOI: 10.1360/TB-2023-0475.
[35] 易灵心. 肉牛放牧对盐化草甸植被结构与功能的影响[D]. 兰州: 兰州大学, 2023. DOI: 10.27204/d.cnki.glzhu.2023.003057.
[36] 武麟. 典型草原植物氮素分配和氮磷含量季节动态及其对放牧的响应[D]. 呼和浩特: 内蒙古大学, 2022.
[37] ZHANG B, LIU X, DEANGELIS D L, et al. Modeling the compensatory response of an invasive tree to specialist insect herbivory[J]. Biological Control, 2018, 117: 128-136. DOI: 10.1016/j.biocontrol.2017.11.002.
[38] 俞新慧, 吴晓东, 葛绪广, 等. 收割强度对粉绿狐尾藻生长和水质的影响[J]. 水生态学杂志, 2022, 43(1): 95-102. DOI: 10.15928/j.1674-3075.202004040091.
[1] ZHOU Zihao, LIU Yuhan, TAN Yanhong, MENG Yuqing, WU Hongying, HUANG Jinlong, WU Zhengjun. Enzymatic Preparation of Antimicrobial Peptides from the Viscera of Pomacea canaliculata [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 154-161.
[2] ZHENG Tao, ZHOU Xinran, ZHANG Long. Global Asymptotic Stability of Predator-Competition-Cooperative Hybrid Population Models of Three Species [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 64-70.
[3] LIANG Bixia, HUANG Jinlong, HAN Lixia,WU Zhengjun. Winter Fertility of Pomacea canaliculata in Guilin,China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 166-173.
[4] MIAO Xinyan, ZHANG Long, LUO Yantao, PAN Lijun. Study on a Class of Alternative Competition-Cooperation Hybrid Population Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 25-31.
[5] LIANG Hong, TONG Zhangfa, ZHOU Liya, SHEN Xingchan, PAN Yingming. Reflection on Training of Applied Talents Based on Guangxi ChemistryExperimental Skills Competition for College Students [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(3): 116-120.
[6] LU Zhou, YANG Gang, SHU Xiao-lian, YU Gui-dong, ZHOU Fang. Spatial Niches of Nonggang Babbler and Streaked Wren Babbler in Winter [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 120-126.
[7] DUAN Lin-lin, LIANG Shi-chu, LI Fu-rong, ZHOU Qiao-jin. Comparison of the Leaf Allelopathic Potential of the Invasive WetlandPlant Spartina alterniflora and Three Native Mangrove Plants [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 109-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Jie, SONG Shuang, WU Bin. Overview of Image USM Sharpening Forensics and Anti-forensics Techniques[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 1 -16 .
[2] AI Congcong, GONG Guoli, JIAO Xiaoyu, TIAN Lu, GAI Zhongchao, GOU Jingxuan, LI Hui. Komagataella phaffii Serves as a Model Organism for Emerging Basic Research[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 17 -26 .
[3] ZHAI Yanhao, WANG Yanwu, LI Qiang, LI Jingkun. Progress of Dissolved Organic Matter in Inland Water by Three-Dimensional Fluorescence Spectroscopy Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 34 -46 .
[4] CHEN Li, TANG Mingzhu, GUO Shenghui. Cyber-Physical Systems State Estimation and Actuator Attack Reconstruction of Intelligent Vehicles[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 59 -69 .
[5] LI Chengqian, SHI Chen, DENG Minyi. Study for the Electrocardiographic Signal of Brugada Syndrome Patients Using Cellular Automaton[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 86 -98 .
[6] LÜ Hui, LÜ Weifeng. Fundus Hemorrhagic Spot Detection Algorithm Based on Improved YOLOv5[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 99 -107 .
[7] YI Jianbing, PENG Xin, CAO Feng, LI Jun, XIE Weijia. Research on Point Cloud Registration Algorithm Based on Multi-scale Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 108 -120 .
[8] LI Li, LI Haoze, LI Tao. Multi-primary-node Byzantine Fault-Tolerant Consensus Mechanism Based on Raft[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 121 -130 .
[9] ZHAO Xiaomei, DING Yong, WANG Haitao. Maximum Likelihood DOA Estimation Based on Improved Monarch Butterfly Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 131 -140 .
[10] ZHU Yan, CAI Jing, LONG Fang. Statistical Analysis of Partially Step Stress Accelerated Life Tests for Compound Rayleigh Distribution Competing Failure Model Under Progressive Type-Ι Hybrid Censoring[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 159 -169 .